Improved Scale Prediction for High Calcium Containing Produced Brine at High Temperature and High Pressure Conditions

Author:

Shen Yu-Yi1,Deng Guannan1,Wang Xin1,Kan Amy T.1,Tomson Mason B.1

Affiliation:

1. Rice University

Abstract

Abstract Scale prevention is one of the most important problems in the oil and gas industry. Due to the more aggressive production behavior recently, there are more chances to encounter high temperature, high pressure, and high TDS conditions. This study focuses on improving the scale prediction in the condition of high temperature (up to 210°C), and TDS (total dissolved solids, over 300,000 mg/L) with calcium concentration up to 2.0 molality (m). A hydrothermal autoclave reactor was developed for solubility measurement. The solubility of anhydrite was measured in the CaCl2-NaCl-H2O solution with constant ionic strength of 4 m. Results shows that the ionic strength effect and the Ca-SO4 association would increase the anhydrite solubility while the common ion effect decreased the anhydrite solubility. The measured solubility data can develop the virial coefficient for the ion interaction of Ca2+ and SO42. This virial coefficient can then be applied in Pitzer models to improve the calculation for the saturation index of scale. Quantifying the Ca-SO4 interaction parameters can make a better prediction of mineral solubility with high calcium concentration. The results can also improve not only anhydrite but all of the sulfate scale predictions at high temperature with high TDS conditions. This study offers a reliable and efficient method to obtain solubility under high temperature conditions and expands the scale prediction of the production brine with high calcium concentration at higher temperature and pressure limits.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3