Transient Flow of Non-Newtonian Power-Law Fluids in Porous Media

Author:

Ikoku Chi U.1,Ramey Henry J.1

Affiliation:

1. Stanford U.

Abstract

Abstract The transient flow behavior of non-Newtonian fluids in petroleum reservoirs is studied. A new partial differential equation is derived. The diffusivity equation is a special case of the new equation. The new equation describes the flow of a slightly compressible, non-Newtonian, power-law fluid in a homogeneous porous medium. This equation should govern the flow of most non-Newtonian oil-displacement agents used in secondary and tertiary oil-recovery projects, such as polymer solutions, micellar projects, such as polymer solutions, micellar solutions, and surfactant solutions. Analytical solutions of the new partial differential equation are obtained that introduce new methods of well-test analysis for non-Newtonian fluids. An example is presented for using the new techniques to analyze injection well-test data in a polymer injection project. project. Graphs of the dimensionless pressure function also are presented. These may be used to investigate the error when using Newtonian fluid-flow equations to model the flow of non-Newtonian fluids in porous media. Introduction Non-Newtonian fluids, especially polymer solutions, microemulsions, and macroemulsions, often are injected into the reservoir in various enhanced oil-recovery processes. In addition, foams sometimes are circulated during drilling. Thermal recovery of oil by steam and air injection may lead to the flow of natural emulsions and foams through porous media. Some enhanced oil-recovery projects involving the injection of non-Newtonian fluids have been successful, but most of these projects either failed or performed below expectation. These results suggest the need for a thorough study of the stability of non-Newtonian fluids at reservoir conditions, and also a new look at the flow of non-Newtonian fluids in porous media. porous media. Many studies of the rheology of non-Newtonian fluids in porous media exist in the chemical engineering, rheology, and petroleum engineering literature. In 1969, Savins presented an important survey on the flow of non-Newtonian fluids through porous media. In some cases, he interpreted porous media. In some cases, he interpreted published data further and compared results of published data further and compared results of different investigators. van Poollen and Jargon presented a numerical study of the flow of presented a numerical study of the flow of non-Newtonian fluids in homogeneous porous media using finite-difference techniques. They considered steady-state and unsteady-state flows and used the Newtonian fluid-flow equation. They considered non-Newtonian behavior by using a viscosity that varied with position. No general method was developed for analyzing flow data. Bondor et al. presented a numerical simulation of polymer presented a numerical simulation of polymer flooding. Much useful information on polymer flow was presented, but transient flow was not considered.At present, there is no standard method in the petroleum engineering literature for analyzing petroleum engineering literature for analyzing welltest data obtained during injection of non-Newtonian fluids into petroleum reservoirs. However, injection of several non-Newtonian oil-displacement agents is an important oilfield operation. Interpretation of well-test data for these operations should also be important. Obviously, procedures developed for Newtonian fluid flow are not appropriate. SPEJ P. 164

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3