Effect of Large Capillary Pressure on Fluid Flow and Transport in Stress-sensitive Tight Oil Reservoirs

Author:

Xiong Yi1,Winterfeld Phil1,Wang Cong1,Huang Zhaoqin2,Wu Yu-Shu1

Affiliation:

1. Colorado School of Mines

2. China University of Petroleum (East China)

Abstract

Abstract The pore sizes of unconventional reservoir rock, such as shale and tight rock, are on the order of nanometers. The thermodynamic properties of in-situ hydrocarbon mixtures in such small pores are significantly different from those of fluids in bulk size, primarily due to effect of large capillary pressure. For example, it has been recognized that the phase envelop shifts and bubble-point pressure is suppressed in tight and shale oil reservoirs. On the other hand, the stress-dependency is pronounced in low permeability rocks. It has been observed that pore sizes, especially the sizes of pore-throats, are subject to decrease due to rock deformation induced by the fluid depletion from over-pressurized tight and shale reservoirs. This reduction on pore spaces again affects the capillary pressure and therefore thermodynamic properties of reservoir fluids. Thus it is necessary to model the effect of stress- dependent capillary pressure and rock deformation on tight and shale reservoirs. In this paper, we propose and develop a multiphase, multidimensional compositional reservoir model to capture the effect of large capillary pressure on flow and transport in stress-sensitive unconventional reservoirs. The vapor-liquid equilibrium (VLE) calculation is performed with Peng-Robinson Equation of State (EOS), including the impact of capillary pressure on phase behavior and thermodynamic properties. The fluid flow is fully coupled with geomechanical model, which is derived from the thermo- poro-elasticity theory; mean normal stress as the stress variable is solved simultaneously with mass conservation equations. The finite-volume based numerical method, integrated finite difference method, is used for space discretization for both mass conservation and stress equations. The formulations are solved fully implicitly to assure the stability. We use Eagle Ford tight oil formations as an example to demonstrate the effect of capillary pressure on VLE. It shows that the bubble-point pressure is suppressed within nano-pores, and fluid properties, such as oil density and viscosity, are influenced by the suppression due to more light components remained in liquid phase. In order to illustrate the effect of stress-dependent capillary pressure on tight oil flow and production, we perform numerical studies on Bakken tight oil reservoirs. The simulation results show that bubble-point suppression is exaggerated by effects of rock deformation, and capillary pressure on VLE also affects the reservoir pressure and effective stress. Therefore the interactive effects between capillary pressure and rock deformation are observed in numerical results. Finally, the production performance in the simulation examples demonstrates the large effect of large capillary pressure on estimated ultimate recovery (EUR) in stress-sensitive tight reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3