Consistent Discretization Methods for Reservoir Simulation on Cut-Cell Grids

Author:

Alpak Faruk O.1,Jammoul Mohamad2,Wheeler Mary F.2

Affiliation:

1. Shell International Exploration and Production Inc.

2. The University of Texas at Austin

Abstract

AbstractDiscretization methods have been developed to accompany a novel cut-cell gridding technique for reservoir simulation that preserves the orthogonality characteristic in the lateral direction. A major drawback of the cut-cell gridding method is that polyhedral cells emerge near faults that have relatively small volumes. Pragmatic but non-rigorous approximation methods have been developed in the past to merge these cells with their neighbors so that the grid representation fits the two-point flux approximation (TPFA) framework. In this work, we take a different approach and investigate the global and local applications of select consistent discretization methods in the vicinity of fault representations on cut-cell grids.We develop and test consistent discretization methods that are of low computational cost and do not require major intrusive changes to the solver structure of commercial reservoir simulators. Cell-centered methods such as multi-point flux approximation (MPFA), average multi-point flux approximation (AvgMPFA), and nonlinear two-point flux approximation (NTPFA) methods fit naturally into the framework of existing industrial-grade simulators. Therefore, we develop and test variants of the AvgMPFA and NTPFA methods that are specifically designed to operate on cut-cell grids. An implementation of the well-established but computationally expensive MPFA method is also made for cut-cell grids to serve as a reference to computations with AvgMPFA and NTPFA. All investigated methods are implemented within the framework of a full-physics 3D research simulator with a general compositional formulation, which encompasses black-oil models.We use a set of synthetic cut-cell grid models of varying complexity including conceptual models and a field-scale model. We compare the novel cut-cell adapted AvgMPFA and NTPFA simulation results in terms of accuracy and computational performance against the ones computed with reference MPFA and TPFA methods. We observe that AvgMPFA consistently yields more accurate and computationally efficient simulations than NTPFA on cut-cell grids. Moreover, AvgMPFA hybrids run faster than NTPFA hybrids when compared on the same problem for the same hybridization strategy. On the other hand, the computational performance of AvgMPFA degrades more rapidly compared to NTPFA with increasing "rings" of orthogonal blocks around cut-cells owing to its relatively wider stencil. Auspiciously, only one or two "rings" of orthogonal blocks around cut cells are sufficient with AvgMPFA to deliver high accuracy.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3