A New Correlation of Acid Fracture Conductivity Subject to Closure Stress

Author:

Deng J..1,Mou Jianye2,Hill A. D.1,Zhu D..1

Affiliation:

1. Texas A&M University

2. China University of Petroleum (Beijing)

Abstract

Abstract The conductivity of an acid-etched fracture depends strongly on void spaces and channels along the fracture resulting from uneven acid etching of the fracture walls. In this study, we modeled the deformation of the rough fracture surfaces acidized in heterogeneous formations based on the synthetic permeability distributions and developed a new correlation to calculate the acid-etched fracture conductivity. In our previous work, we modeled the dissolution of the fracture surfaces in formations having small-scale heterogeneities in permeability. The characterization of the correlated permeability fields of rock includes the average permeability, normalized correlation lengths in both horizontal and vertical directions, and normalized standard deviation. These statistical parameters have a significant influence on the fracture etching profiles obtained from the model. Beginning with this fracture width distribution, we have modeled the deformation of the fracture surfaces as closure stress is applied to the fracture. The elastic properties of the rock, such as the Young’s modulus and the Poisson’s ratio, have effects on the size of the spaces remaining open after fracture closure. After the model yields the width profile under closure stress, the overall conductivity of the fracture is then obtained by numerically modeling the flow through this heterogeneous system. In this paper, we introduce our models and investigate the effects of both permeability and mineralogy distributions, and rock elastic properties on the overall conductivity of an acid etched fracture. A new acid-fracture conductivity correlation is developed based on many numerical experiments.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3