Experimental Study and Numerical Modeling of Boron Transport in Reservoir and Its Influence on Seawater-Breakthrough Calculation

Author:

Wang Yanqing1,Li Xiang1,Lu Jun2

Affiliation:

1. University of Tulsa

2. University of Tulsa (Corresponding author; email: jun-lu@utulsa.edu)

Abstract

Summary Seawater injection is widely used to maintain offshore-oil-reservoir pressure and improve oil recovery. However, injecting seawater into reservoirs can cause many issues, such as reservoir souring and scaling, which are strongly related to the seawater-breakthrough percentage. Accurately calculating the seawater-breakthrough percentage is important for estimating the severity of those problems and further developing effective strategies to mitigate those issues. The validation of using natural-ion boron as a tracer to calculate seawater-breakthrough percentage was investigated. Boron can interact with clays, which can influence the accuracy in seawater-breakthrough calculation. Therefore, the interaction between boron and different clays at various conditions was first studied, and the Freundlich adsorption equation was used to describe the boron-adsorption isotherms. Then, the boron-adsorption isotherms were coupled into the reservoir simulator to investigate the boron transport in porous media, and the results in turn were further analyzed to calculate the accurate seawater-breakthrough percentage. Results indicated that boron adsorption by different clays varied. pH value of solution can significantly influence the amount of boron adsorbed. As a result, the boron-concentration profile was delayed in coreflood tests. The accuracy of the new model was verified by convergence rate tests and comparison with analytical results. Furthermore, model results fit well with experimental data. On the basis of the reservoir-simulation results, the boron-concentration profile in produced water can be used to calculate the seawater-breakthrough percentage by considering the clay-content distribution. However, the seawater-breakthrough point cannot be determined by boron because the boron concentration is still at the formation level after seawater breakthrough due to boron desorption.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3