Impact of Drilling Fluid Contamination on Performance of Rock-Based Geopolymers

Author:

Eid E.1,Tranggono H.1,Khalifeh M.2,Salehi S.3,Saasen A.1

Affiliation:

1. University of Stavanger

2. University of Stavanger (Corresponding author)

3. University of Oklahoma

Abstract

Summary Our objective is to present selected rheological and mechanical properties of rock-based geopolymers contaminated with different concentrations of drilling fluids. The possible flash setting and the maximum intake of drilling fluids before seeing a dramatic deterioration of the geopolymers are presented. Rock-based geopolymers designed for cementing conductor and surface casing were prepared and cured for up to 28 days at 22°C and atmospheric pressure. Water-based drilling fluids (WBDFs) and oil-based drilling fluids (OBDFs) were designed in accordance with the recommendations from the petroleum industry. The fluid samples were prepared, and their viscous behavior was characterized before and after hot-rolling. The geopolymeric slurries were mixed and then blended with the prepared drilling fluid volumes. The contaminated geopolymeric slurries were cured and tested at different time intervals. American Petroleum Institute (API) Class G neat cement was used as a reference. These samples were cured and contaminated with the same drilling fluids. The properties of contaminated geopolymer slurries were benchmarked with those of the contaminated Class G cement. The obtained mechanical properties showed that the rock-based geopolymers are more sensitive to WBDFs than to OBDFs. However, for contaminated Portland cement samples, the obtained results were opposite, and the contamination effect of OBDF on cement was more noticeable than WBDF. The impact of geopolymer contamination is a function of curing time. Although geopolymeric samples showed dramatic strength retrogression at the early time, strength buildup of the samples compensated for the impact of contamination.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3