A New Method for Fracture Diagnostics Using Low Frequency Electromagnetic Induction

Author:

Basu Saptaswa1,Sharma Mukul M.1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Currently, microseismic monitoring is widely used for fracture diagnosis. Since the method monitors the propagation of shear failure events, it is an indirect measure of the propped fracture geometry. Our primary interest is in estimating the orientation and length of the ‘propped’ fractures (not the created fractures), since this is the primary driver for well productivity. This paper presents a new Low Frequency Electromagnetic Induction (LFEI) method which has the potential to estimate not only the propped length, height and orientation of hydraulic fractures but also the vertical distribution of proppant within the fracture. The proposed technique involves pumping electrically conductive proppant (which is currently available) into the fracture and then using a specially built logging tool that measures the electromagnetic response of the formation. Results are presented for a proposed logging tool that consists of three sets of tri-directional transmitters and receivers at 6, 30 and 60 feet spacing respectively. The solution of Maxwell's equations shows that it is possible to use the tool to determine both the orientation and the length of the fracture by detecting the location of these particles in the formation after hydraulic fracturing. Results for extensive sensitivity analysis are presented to show the effect of different propped lengths, height and orientation of planar fractures in a shale environment. Multiple numerical simulations, using a leading-edge (FEKO) electromagnetic simulator, indicate that we can detect and map fractures up to 250 feet in length, 0.2 inches wide, and with a 45 degree of inclination with respect to the wellbore. Special cases, such as proppant banking and wells with steel casing in place, were also considered.

Publisher

SPE

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3