Decline Curve Analysis Using Type Curves for Two-Porosity Systems

Author:

Da Prat Giovanni1,Cinco-Ley Heber2,Ramey Henry3

Affiliation:

1. INTEVEP S.A.

2. U. of Mexico

3. Stanford U.

Abstract

Abstract Constant producing pressure solutions that define declining production rates with time for a naturally fractured reservoir are presented. The solutions for the dimensionless flow rate are based on a model presented by Warren and Root. The model was extended to include constant producing pressure in both infinite and finite systems. The results obtained for a finite no-flow outer boundary are new and surprising. It was found that the flow rate shows a rapid decline initially, becomes nearly constant for a period, and then a final decline in rat,- takes place.A striking result of the present study is that ignoring the presence of a constant flow rate period in a type-curve match can lead to erroneous estimates of the dimensionless outer radius of a reservoir. An example is presented to illustrate the method of type-curve matching for a naturally fractured system. Introduction Naturally fractured reservoirs consist of heterogeneous porous media where the openings (fissures and fractures) vary considerably in size. Fractures and openings of large size form vugs and interconnected channel, whereas the tine cracks form block systems which are the main body of the reservoir (Fig. 1). The porous blocks store most of the fluid in the reservoir and are often of low permeability, whereas the fractures have a low storage capacity and high permeability. Most of the fluid flow will occur through the fissures with the blocks acting as fluid sources. Even though the volumetric average permeability in a naturally fractured system is low, such systems often exhibit an effective permeability that is higher than the block matrix permeability, and behave differently from ordinary homogeneous media. These systems have been studied extensively in the petroleum literature. One of the first such studies was published by Pirson in 1953. In 1959, Pollard presented one of the first pressure transient models available for interpretation of well test data from two-porosity systems. The most complete analysis of transient flow in two-porosity systems was presented in 1960 by Barenblatt and Zheltov. The Warren and Root study in 1963 is considered the forerunner of modern interpretation of two-porosity systems. Their paper has been the subject of study by many authors. The behavior of fractured systems has long been a topic of controversy Many authors have indicated that the graphical technique proposed by Pollard in 1959 is susceptible to error caused by approximations in the mathematical model. Nevertheless, the Pollard method still is used. The most complete study of two-porosity systems appears to be the Mavor and Cinco-Ley study in 1979. This study considers wellbore storage and skin effect, and also considers production, both at constant rate and at constant pressure. However, little information is presented concerning the effect of the size of the system on pressure buildup behavior.Although decline curve analysis is widely used, methods specific to two-porosity fractured systems do not appear to be available. It is the objective of this paper to produce and study decline curve analysis for a naturally fractured reservoir. The Warren and Root model was chosen as the basis for this work. Partial Differential Equations The basic partial differential equations for fluid flow in a two-porosity system were presented by Warren and Root in 1963. The model was extended by Mavor and Cinco-Ley to include wellbore storage and skin effect. SPEJ P. 354^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3