The P-µ-T Cubic Equation of Viscosity for Reservoir Oils

Author:

Mishra Akshaya Kumar1ORCID,Jhalendra Rajak Kumar1,Kumar Ashutosh2

Affiliation:

1. Indian Institute of Technology (ISM) Dhanbad

2. Indian Institute of Technology (ISM) Dhanbad (Corresponding author)

Abstract

Summary Oil recovery simulation sensitivity increases with heavier oils for the existing viscosity models, driving into higher levels of difficulty when fitting viscosity data for rising oil heaviness, particularly below the saturation pressure. Keeping in view the similarity of trends of viscosity and density with isothermal pressures for reservoir oils, the P-μ-T cubic viscosity model, which was developed for pure hydrocarbon components, was extended to reservoir oils. Two parameters in the P-μ-T cubic viscosity model for mixtures with pure and pseudocomponents are identified for adjusting the viscosity data fitting: Kc for controlling the viscosity gradient with pressure and the “ε” shifting trends for increasing viscosity direction. These two parameters are treated as the adjustable parameters required for fitting the viscosity data. A total of 129 reservoir oils from different sources are used to validate the reliability of the P-μ-T viscosity model. The default model (where ε and Kc are 1 and 45, respectively), extended to 71 light oils, resulted in 31% of average absolute relative deviation (AARD) in viscosity prediction. However, separate adjusted parameters are obtained per oil for more accurate viscosity data fitting. Application of the model in this work results in (post-fitting) AARD% of 2.86% average for 36 low-viscosity oil data, 5.68% for 9 high-viscosity oil data, 9% for five oil blends, and 4.11% for bitumen blends. The model gives an AARD of 3.06% in the undersaturated region and 3.79% in the saturated region for the oil considered. The model predicts better the viscosity above saturation pressure for low-viscosity oils and below saturation pressure for high-viscosity oils. A comparative analysis of the P-μ-T cubic viscosity model vs. other models demonstrates its ability to successfully capture viscosity trends of oil and blends in all viscosity ranges. For simplicity, the P-μ-T cubic viscosity model is proposed with only two optimizing parameters even though using a third parameter improves the matching in heavy oils.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference92 articles.

1. Cubic Equations of State;Abbott;AIChE J,1973

2. The Viscosities of Liquid and Gaseous N-Pentane at High Pressures at Different Temperatures;Agaev;Gazov Prom,1963

3. Measurement and Modeling of the Phase Behavior of Solvent Diluted Bitumens;Agrawal;Fluid Phase Equilib,2012

4. Measurement of Gas Condensate, Near-Critical and Volatile Oil Densities, and Viscosities at Reservoir Conditions;Al-Meshari,2007

5. Free-Volume Viscosity Model for Fluids in the Dense and Gaseous States;Allal;Phys Rev E Stat Nonlin Soft Matter Phys,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3