Robust Fully-Implicit Coupled Multiphase-Flow and Geomechanics Simulation

Author:

Alpak Faruk O.1

Affiliation:

1. Shell International Exploration and Production Inc.

Abstract

Summary Material nonlinearity, boundary and arching constraints, nonuniform reservoir flows, sliding along material interfaces, or faults are among the causes of shear deformation or changes in the total stresses and the resulting stress redistribution in hydrocarbon reservoirs. Previous studies have demonstrated that shear or nonuniform deformation and stress redistribution in subsurface formations may have significant effects on reservoir fluid flows. Thus, a two-way coupled analysis is the required approach under circumstances where the shear deformation or changes in total stresses in the reservoir cannot be neglected. A coupled multiphysics simulator is developed for the dynamic modeling of multiphase thermal/compositional flow, and poroelastoplastic geomechanical deformation. The equations that govern multiphase flow in permeable media, heat transport, and poroelastoplastic geomechanics together lead to a highly nonlinear system. Finite-volume and Galerkin finite-element methods are used for the numerical solution of thermal/compositional multiphase fluid-flow and geomechanics equations on general hexahedral grids, respectively. Because of its improved stability and rapid convergence characteristics, the resulting multiphysics system of equations is solved with a fully-implicit formulation by use of an effective implementation of the Newton-Raphson method in the default mode. The coupled simulator is by design maximally modular with self-contained flow and geomechanics modules that can be operated in a two-way coupled mode with explicit-, iterative-, and fully-implicit-coupling options. The coupled-modeling system lends itself naturally not only to near-wellbore coupled flow and geomechanical deformation problems where poroplasticity may play a more prominent role, but also to reservoir-scale simulations where both poroelasticity and poroplasticity are relevant. The coupled simulator is validated against analytical solutions for simple cases, by use of published data in the open literature. Validation results demonstrate the robust, fast, and accurate predictive capabilities of the multiphysics modeling protocol.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3