Incorporating Geomechanical and Dynamic Hydraulic-Fracture-Property Changes Into Rate-Transient Analysis: Example From the Haynesville Shale

Author:

Clarkson C.R.. R.1,Qanbari F..1,Nobakht M..2,Heffner L..3

Affiliation:

1. University of Calgary

2. Encana Corporation and University of Calgary

3. Goodrich Petroleum

Abstract

Summary It is well-known that many unconventional reservoirs experience porosity and permeability changes with pressure change during production. In recent work, authors have incorporated geomechanical modeling into production-analysis procedures to account for stress sensitivity of permeability of unconventional gas reservoirs, such as shale gas. Such corrections are necessary both for deriving accurate estimates of reservoir and hydraulic-fracture properties from rate-transient analysis (RTA) and for developing accurate long-term forecasts. It is possible with some shale-gas reservoirs that dynamic changes may occur in both the induced hydraulic fracture and matrix permeability, which could have a substantial impact on shale-gas productivity. The stress dependence of shale-gas permeability has been quantified in the laboratory by several researchers, but measurements of this kind for propped or unpropped fractures under in-situ conditions are less routinely acquired. For the latter, a variety of mechanisms, caused in part or wholly by stress changes in the induced hydraulic fracture, could lead to conductivity changes. In the current work, we investigate the impact of both stress-dependent matrix permeability and fracture-conductivity changes on rate-transient signatures and derived reservoir and hydraulic-fracture properties. Stress-dependent matrix permeability is incorporated into RTA by use of modified pseudopressure and pseudotime formulations, and fracture-conductivity changes are approximated by applying a time-dependent (dynamic) skin effect. We demonstrate that when RTA incorporates both matrix permeability changes and dynamic skin, the resulting rate-transient signature looks very similar to those of other shale plays (longterm transient linear flow). Uncorrected data appear to have a very short transient-linear-flow period, followed by apparent boundary-dominated flow. The impact of the applied corrections on the estimates of system permeability and fracture half-length is demonstrated, as is the impact on production forecasts.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3