Application of Deep Neural Networks to the Operator Space of Nonlinear PDE for Physics-Based Proxy Modelling

Author:

Hadjisotiriou George1,Mansour Pour Kiarash1,Voskov Denis2

Affiliation:

1. Delft University of Technology

2. Delft University of Technology Stanford University

Abstract

AbstractIn this study, we utilize deep neural networks to approximate operators of a nonlinear partial differential equation (PDE), within the Operator-Based Linearization (OBL) simulation framework, and discover the physical space for a physics-based proxy model with reduced degrees of freedom. In our methodology, observations from a high-fidelity model are utilized within a supervised learning scheme to directly train the PDE operators and improve the predictive accuracy of a proxy model. The governing operators of a pseudo-binary gas vaporization problem are trained with a transfer learning scheme. In this two-stage methodology, labeled data from an analytical physics-based approximation of the operator space are used to train the network at the first stage. In the second stage, a Lebesgue integration of the shocks in space and time is used in the loss function by the inclusion of a fully implicit PDE solver directly in the neural network's loss function. The Lebesgue integral is used as a regularization function and allows the neural network to discover the operator space for which the difference in shock estimation is minimal. Our Physics-Informed Machine Learning (PIML) methodology is demonstrated for an isothermal, compressible, two-phase multicomponent gas-injection problem. Traditionally, neural networks are used to discover hidden parameters within the nonlinear operator of a PDE. In our approach, the neural network is trained to match the shocks of the full-compositional model in a 1D homogeneous model. This training allows us to significantly improve the prediction of the reduced-order proxy model for multi-dimensional highly heterogeneous reservoirs. With a relatively small amount of training, the neural network can learn the operator space and decrease the error of the phase-state classification of the compositional transport problem. Furthermore, the accuracy of the breakthrough time prediction is increased therefore improving the usability of the proxy model for more complex cases with more nonlinear physics.

Publisher

SPE

Reference20 articles.

1. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems;Abadi,2016

2. Three ways to solve partial differential equations with neural networks — A review;Blechschmidt;GAMM-Mitteilungen,2021

3. Optimization of CO2 injection using multi-scale reconstruction of composition transport;Chen;Computational Geosciences,2020

4. Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques;Christie;SPE Reservoir Evaluation & Engineering

5. Limitations of Physics Informed Machine Learning for Nonlinear Two-Phase Transport In Porous Media;Fuks;Journal of Machine Learning for Modeling and Computing,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3