An Evaluation of Diffusion Effects in Miscible Displacement

Author:

Handy L.L.1

Affiliation:

1. California Research Corp.

Abstract

Introduction The development of a theory for miscible liquid displacement requires evaluation of the variables which affect growth of the mixing zone between solvent and displaced oil. Factors which appear to be important are individual fluid viscosities, viscosity ratios, flood rate, fluid densities, flow characteristics of the porous medium and molecular diffusion coefficients of the fluid components. The primary purpose of this paper is to evaluate diffusion effects. Theoretical treatments to date have been limited to floods for which the viscosity ratio is one. Two principal theories have been proposed. Von Rosenberg adapted for porous media a theory derived for capillary tubes by G. Taylor. In this theory molecular diffusion perpendicular to the direction of flow is a primary factor in sharpening the flood front. Slow floods give sharper fronts for a given distance traveled than fast floods. An alternative theory considers miscible liquid displacement as a statistical problem. Diffusion is not an important factor in this theory, but it leads to the same general type of equation as von Rosenberg's. Both theories predict S-shaped concentration profiles with the same dependence on distance traveled. The statistical or "dispersion" theory predicts rate independence, however. To supplement rate studies a direct measurement of a diffusion effect would be helpful in evaluating which of the two proposed mechanisms best describes miscible liquid displacement for one-to-one viscosity ratio systems. No quantitative theory has been proposed for floods in which a low-viscosity fluid displaces a high-viscosity fluid. It might be anticipated, however, that the extensive fingering observed in floods with adverse viscosity ratios would increase opportunities for an exchange of components between displaced and displacing liquids by a diffusional process. Even if molecular diffusion were not an important mixing mechanism for one-to-one viscosity ratio systems, it could be significant in systems with adverse viscosity ratios.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3