Novel Nanoparticle-Based Drilling Fluid with Improved Characteristics

Author:

Zakaria Mohammad F.1,Husein Maen1,Hareland Geir1

Affiliation:

1. Department of Chemical and Petroleum Engineering, University of Calgary

Abstract

Abstract The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. In the current work, a new class of nanoparticle (NP) loss circulation materials has been developed. Two different approaches of NP formation and addition to oil-based drilling fluid have been tested. All NPs were prepared in-house either within the oil-based drilling fluid (in-situ), or within an aqueous phase (ex-situ), which was eventually blended with the drilling fluid. Under low pressure low temperature API standard test, more than 70% reduction in fluid loss was achieved in the presence of NPs compared to only 9% reduction in the presence of typical LCMs. The filter cake developed during the NP-based drilling fluid filtration was thin, which implies high potential for reducing the differential pressure sticking problem and formation damage while drilling. Moreover, at the level of NPs added, there was no material impact on drilling fluid viscosity and the fluid maintained its stability for more than 6 weeks.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3