Optimization of Remediation of Possible Leakage from Geologic CO2 Storage Reservoirs into Groundwater Aquifers

Author:

Esposito A..1,Benson S. M.1

Affiliation:

1. Stanford University

Abstract

Abstract Maintaining the long term storage of CO2 is an important requirement for a large scale geologic CO2 storage project. Nevertheless, the possibility remains that the CO2 will leak out of the formation into overlying groundwater aquifers. There are many groundwater remediation technologies available that could be applied for remediating CO2 leaks. A site specific remediation plan is also important during the site selection process and necessary before storage begins. Due to the importance of protecting drinking water resources, this study determines the optimal remediation scenario for various leakage conditions. The two objectives for remediation considered here are removing any mobile CO2 and reducing the quantity of CO2 in the reservoir. The main technique to remediate the leak is to extract the CO2 in both the gaseous and dissolved phase. Another technique analyzed is to inject water to dissolve the gaseous CO2 in the groundwater and reduce the overall aqueous concentration and immobilize CO2 by capillary trapping. Water injection is similar to the impact of regional flow in the reservoir. The first part of our research was to determine the processes that control the size and shape of the leakage plume in the groundwater aquifer. We used the multiphase flow simulator TOUGH2 with CO2 leakage from a point source to analyze the plume at various leakage rates. At the depth of most groundwater aquifers the pressure is shallow enough that a significant portion of the CO2 is in gas phase. Due to the large difference between the density of the groundwater and the CO2, we found that the leakage rate and the quantity of CO2 have a very important impact on the resultant leakage plume. The second step was to determine the physical processes that expedite or hinder removal of the CO2 plume. Important processes include capillary trapping as a result of hysteresis in the relative permeability and capillary pressure curves, dissolution, and buoyancy induced flow. We compared the effectiveness of using vertical and horizontal extraction wells to remove the CO2. We next examined the processes that occurred during the second remediation technique where we inject water to dissolve the gaseous CO2 and reduce the overall concentration and increase capillary trapping. With an injection well, the main controlling factor on the dissolution of CO2 was the residual gas saturation and the injection well flow rate. Also, the distance of the gaseous CO2 from the injection well impacted the amount dissolved over time. Based on the initial simulations, the characteristics to optimize are the extraction well depth for vertical or horizontal wells, the extraction well rate, and the injection well rate. We considered the optimal scenario based on the effectiveness of meeting the two objectives of removing mobile CO2 and reducing the quantity of CO2 in the reservoir. Determining the optimal remediation scheme provides a starting point for planning groundwater remediation scenarios for possible leakage events at geologic storage sites.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3