An Experimental Investigation of Polymer Mechanical Degradation at cm and m Scale

Author:

Åsen Siv Marie1,Stavland Arne2,Strand Daniel2,Hiorth Aksel1

Affiliation:

1. UiS, IRIS and The National IOR Centre of Norway

2. IRIS and The National IOR Centre of Norway

Abstract

Abstract In this work, we challenge the common understanding that mechanical degradation takes place at the rock surface or within the first few mm. The effect of core length on mechanical degradation of synthetic EOR polymers was investigated. We constructed a novel experimental set-up for studying mechanical degradation at different flow rates as a function of distances travelled. The set-up enabled us to evaluate degradation in serial mounted core segments of 3, 5, 8 and 13 cm individually or combined. By recycling we could also evaluate degradation at effective distances up to 20 m. By low rate reinjecting of polymers previously degraded at higher rates, we simulated the effect of radial flow on degradation. Experiments were performed with two different polymers (high molecular weight HPAM and low molecular weight ATBS) in two different brines (0.5% NaCl and synthetic seawater). In linear flow at high shear rates, we observed a decline in degradation rate with distance travelled, but a plateau was not observed. Even after 20 m there was still some degradation taking place. The molecular weight (MW) of the degraded polymer could be matched with a power law dependency, MWD ~L-x, where x for the HPAM was 0.07 and x for ATBS was 0.03. We conclude that in linear flow, the mechanical degradation depends on the core length. However, in radial flow where the velocity decreases by length, the mechanical degradation reaches equilibrium with no further degradation deeper into the formation. For the experiments where we evaluated degradation over large distances at high shear rates, we observed a decline in degradation rate with distance travelled, but we could not conclude that we reached a plateau. Even after 20 m there is still some degradation taking place. It is important to consider this knowledge when interpreting core scale experiments. However, the observed degradation is associated with high-pressure gradients, in the order of 100 bar/meter, which at field scale is not realistic. We confirmed previous findings; degradation depends on salinity and molecular weight. Results show that in all experiments with significant degradation, most of the degradation takes place in the first core segment. Moreover, the higher the shear rate and degradation, the higher is the fraction of degradation that occurs in the first core segment.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3