Algorithm for Detecting Multiple Partial Blockages in Liquid Pipelines by Using Inverse Transient Analysis

Author:

Zhang C.1,Zhang J. J.2,Ma C. B.3,Korobkov G. E.4

Affiliation:

1. National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil & Gas Distribution Technology, China University of Petroleum, and Lomonosov Moscow State University

2. National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil & Gas Distribution Technology, China University of Petroleum (Corresponding author; e-mail: zhangjj@cup.edu.cn)

3. CNOOC Research Institute Co. Ltd.

4. Ufa State Petroleum Technological University

Abstract

Summary Partial blockages form on the inner wall of the crude-oil pipelines as a result of asphaltene precipitation, scale deposition, and so forth. If not controlled and rehabilitated periodically, these partial blockages can have a serious adverse effect on the efficiency, economy, and safety of the operation of the pipeline. Before each rehabilitation operation, the detection of the local flow-condition deterioration (change in diameter) is necessary for efficiency and economy considerations, especially for long-distance subsea crude-oil pipelines. Most conventional detection techniques require the installment of detecting devices along the pipeline. However, they are economically expensive and even technically impossible for pipelines in operation. The present work focuses on an economically efficient technique that can realize remote nonintrusive measurement (i.e., the pressure-wave technique). The purpose of our research is to develop a method for calibrating multiple irregular partial blockages inside the liquid pipe by using the pressure response in the time domain at certain measuring points along the pipe under the transient state. The method involves the direct problem and the inverse problem. The direct problem is the simulation of the transient flow in the liquid pipe with single or multiple partial blockages. A second-order direct problem solver is developed in the framework of the Godunov-type finite-volume method (FVM). The inverse problem is to determine the partial-blockage distribution by using the pressure response at the measuring point under transient conditions. Our algorithm to solve the inverse problem comprises analytical evaluation and optimization. The analytical evaluation provides a reliable search space for the following optimization procedure, and thus effectively alleviates the local optimum problem. Numerical results demonstrate the efficiency and accuracy of proposed methods for solving the direct and inverse problems.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3