Building Multifrac Completion Strategies in Tight Gas Reservoirs: A North Sea Case

Author:

Buijs Hernán1,Guerra Clairet1,Sonwa Roger1,Nami Patrick1,Vecchia Luciano2,Ishmuratov Roman2

Affiliation:

1. Wintershall Dea Headquarters

2. Wintershall Noordzee B.V

Abstract

Abstract Hydraulic fracture design driven by multi-disciplinary collaboration can maximize the production potential of complex multi-frac horizontal wells. Integration of multiple information sources (i.e.: geological, dynamic and geomechanical data) allows to build representative models and have proven to improve modelling towards a realistic understanding of tight reservoir performance of several multi-fracced wells. 3D properties encompassing the reservoir geological heterogeneity, pore pressure, mechanical elasticity and state of stress were utilized to develop a strategy to fracture stimulate a horizontal wellbore in the North Sea Region. The study was instrumental to build fit-for-purpose hydraulic fracture designs by incorporating state of stress changes related to pore pressure depletion on different faulted compartments supported by a reservoir dynamic simulation. Such models provided meaningful value to optimize the well trajectory used to access the host rock, understand fracture height growth possibilities in different compartments and define the number/size of hydraulic fractures required for optimum production.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3