Affiliation:
1. Schlumberger
2. Rice U.
3. Schlumberger-Doll Research Center
Abstract
Summary
This paper discusses a new nuclear magnetic resonance (NMR) method that can provide wettability, saturation, and oil viscosity values in rocks partially saturated with oil and brine. The method takes advantage of two new technological advances in NMR well logging—the MRF* Magnetic Resonance Fluid Characterization Method and NMR "diffusion-editing" (DE) pulse sequences. We discuss the principles underlying the fluid characterization method and the pulse sequences. The fluid characterization method is used to provide robust inversions of DE data suites acquired on fully brine-saturated and partially saturated rock samples. The outputs of the inversion are separate diffusion-free brine and oil T2 distributions for the fluids measured in the rocks.
NMR measurements on partially saturated rocks are sensitive to wettability because of surface relaxation of the wetting-phase fluid. The surface relaxation rate, however, must be significant compared to the bulk relaxation rate in order for wettability to noticeably affect the NMR response. We present results showing that the surface relaxation rate at lower wetting-phase saturations is enhanced compared to that measured at higher saturations. The consequence of wetting-phase saturation on NMR-based wettability determination is discussed. Wettability affects the relaxation rates of both the wetting and nonwetting phases in partially saturated rocks. Surface relaxation of the wetting phase in a rock results in shorter relaxation times than would otherwise be observed for the bulk fluid. The nonwetting-phase fluid molecules do not come into contact with the pore surfaces, and therefore their relaxation rate in the rock is the same as in the bulk fluid.
We present accurate and robust computations of diffusion-free T2 relaxation time distributions for both the wetting and nonwetting phases in four rocks that include two sandstones and two dolomites. A DE data suite was acquired on each rock, measured in two different partial saturation states and also fully brine-saturated. Wettability is determined by comparing the oil and brine T2 relaxation-time distributions measured in the partially saturated rocks with the bulk oil T2 distribution and with the T2 distribution of the fully brine-saturated sample. The brine and oil T2 distributions are used to compute saturation and oil viscosity values.
A general discussion elucidating the sensitivity range and T2 limits of diffusion-based NMR methods is given in the appendix. The appendix also derives and displays the gain in signal-to-noise ratio that is achieved by using DE data sequences for fluid characterization in place of Carr-Purcell-Meiboom-Gill (CPMG) data suites.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献