A New Methodology to Evaluate the Sealing Process Based on Pressure Drop and Fluid Loss in Fractures during the Drilling Operation

Author:

Borges Filho Moacyr Nogueira1ORCID,Soares Andréia Silveira Freire2ORCID,Furtado Filipe Arantes1ORCID,Scheid Claudia Miriam1ORCID,Calçada Luis Américo1ORCID

Affiliation:

1. Department of Chemical Engineering, Rural Federal University of Rio de Janeiro

2. Department of Chemistry, State University of Rio de Janeiro (Corresponding author)

Abstract

Summary Natural or artificial fractures are common in the wellbore during drilling operations. These fractures allow the flow of drilling fluid into the rock formation. The loss of circulation increases the operation’s cost and nonproductive time, which may threaten the well’s structural integrity. To overcome this problem, it is necessary to understand the flow of fluids through fractures and develop methods to mitigate the loss of circulation. This work’s main contributions are expanding the knowledge on the flow of drilling fluids through fractured channels, conducting an experimental study on the flow of suspensions of lost circulation materials (LCM) in fractures, and performing a theoretical analysis to obtain mathematical models describing fractured channels’ sealing. This work proposes a correlation between the pressure drop and the volumetric flow rate of fluid through fractures. To validate the model, a physical simulator collected fluid flow data and pressure drop in fractures with 2-mm, 5-mm, and 10-mm apertures and 1.02-m length. A blend of polymers and calcium borate was used in suspension in water viscosified with xanthan gum (XG). Density and rheological behavior tests were performed to characterize the studied fluids. The LCM had a bimodal particle-size distribution, and the formulated fluids had a Herschel-Bulkley rheological behavior. Pressure drop, flow rate, and rheological data were used to propose a correlation between pressure drop and volumetric flow rate through the fracture. The proposed correlation was used to monitor the sealing of fractures by calculating their hydraulic diameter throughout the sealing process. The LCM suspensions underwent filtration tests to observe the effects of sealing particles on the mudcake and filtrate volume. The proposed correlation fitted the experimental data with less than 10% deviation. The fracture hydraulic diameter was estimated using experimental data of volumetric flow rate and pressure drop, which made it possible to monitor the sealing process of fractures through time. The sealing and filtration tests showed that the borate and polymer blends are effective as filtration control agents and LCM.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference29 articles.

1. Review of Lost Circulation Materials and Treatments with an Updated Classification;Alsaba,2014

2. Training and Qualification of Drilling Fluid Technologists. API Recommended Practice 13b-1;API RP 13L,2009

3. 3D Model of Hydraulic Fracture with Herschel-Bulkley Compressible Fluid Pumping;Cherny;Procedia Struct Integr,2016

4. Computational Modeling of Fluid Flow through a Fracture in Permeable Rock;Crandall;Transp Porous Med,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3