Evaluation and Plugging Performance of Carbon Dioxide-Resistant Particle Gels for Conformance Control

Author:

Sun Xindi1,Long Yifu2,Bai Baojun2,Wei Mingzhen2,Suresh Sujay2

Affiliation:

1. Slippery Rock University of Pennsylvania and Missouri University of Science and Technology

2. Missouri University of Science and Technology

Abstract

Summary Traditional polyacrylamide (PAM)-based superabsorbent polymer has been applied to control excess carbon dioxide (CO2) production in CO2-flooding fields. Nevertheless, the application results are mixed because the polyacrylamide-based superabsorbent polymer dehydrates significantly when exposed to supercritical CO2; therefore, we evaluated a novel CO2-resistant gel (CRG) with reliable stability and CO2-responsive properties. Particularly, the CRG swelling ratio (SR) and gel-volume increase after CO2 stimulation if additional water is available. Swollen CRG was placed in high-pressure vessels to examine the weight loss and the property changes before and after exposure to CO2. The breakthrough pressure and CRG-plugging efficiency to CO2 were measured using partially open fractured-sandstone cores. Two water/alternating/gas (WAG) cycles were conducted to test the CRG-plugging performance after CRG injection. The high-pressure vessel-test results show that the CRG is very stable under the supercritical-CO2 condition and no free water is released from the samples. The scanning-electron-microscope (SEM) images confirm that no structural damage was observed in CRG after exposure to CO2. The breakthrough pressure increases with the matrix permeability, which is mainly induced by the internal and external gel cake formed on the rock surface. CRG can reduce the water permeability more than CO2 permeability. CRG-plugging efficiency to CO2 decreases with the increase of WAG cycles. However, in the 0.5-mm fracture model and the 390-md model, CRG-plugging efficiency to water increases with WAG cycles. This phenomenon further indicates that CRG can be stimulated by CO2, which allows CRG to absorb additional water during post-waterflooding. In general, this study reports the concept of the novel CRG and a systematical evaluation of CRG stability under supercritical-CO2 conditions and CRG-plugging efficiency using a partially open fractured-sandstone model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3