Affiliation:
1. Phillips Petroleum Co.
Abstract
Published in Petroleum Transactions, AIME, Volume 216, 1959, pages 312–315.
Abstract
The injection of heat-bearing fluid may offer a wider application to secondary and tertiary recovery from conventional oil reservoirs than underground combustion since the process is more easily controlled and the reservoir requirements, in general, are less critical. In all cases, conduction heat losses to overburden and underburden will impose an economic limit upon the size of the area which can be swept out from any one injection point for any given set of conditions.
The present report describes a method for estimating thermal invasion rates, cumulative heated area, and theoretical economic limits for sustained hot-fluid injection at a constant rate into an idealized reservoir. Full allowance is made for non-productive reservoir heat losses.
Required solutions can be obtained directly from the numerical tables given here, as soon as all operating conditions are specified, without extensive mathematical manipulation on the part of the user.
Introduction
The injection of a heat-bearing fluid into a reservoir is frequently proposed as a means of secondary or tertiary oil production. This form of thermal recovery may offer a wider application to conventional oil reservoirs than underground combustion since the process is more easily controlled and the reservoir requirements, in general, are less critical. Because of its large gross heat capacity, steam appears to be the most efficient heat injection medium, although mixtures of steam and other gases, hot water, hot oil and hot non-condensable gases also have been employed.
Whatever the nature of the injection medium, economic evaluation of such thermal recovery processes will depend upon thermal invasion rates, or rates of productive reservoir heating, at any given time after the start of heat injection. In all cases, conduction heat losses to overburden and underburden will impose an economic limit upon the size of the area which can be swept out from any one injection point, for a given set of reservoir conditions, at any given heat injection rate.
The present report describes a method for estimating thermal invasion rates, cumulative heated area and theoretical economic limits for sustained heat injection at a constant rate into an idealized reservoir, making full allowance for non-productive reservoir heat losses. Required solutions can be obtained directly from the numerical tables given here, as soon as all operating conditions are specified, without extensive mathematical manipulation.
Publisher
Society of Petroleum Engineers (SPE)
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献