The Hybrid-Dimensional Darcy's Law: A Non-Conforming Reinterpreted Discrete Fracture Model (RDFM) for the Compressible Miscible Displacement and Multicomponent Gas Flow in Fractured Media

Author:

Xu Ziyao1,Yang Yang2

Affiliation:

1. Brown University

2. Michigan Technological University

Abstract

AbstractIn this work, we develop a non-conforming reinterpreted discrete fracture model for the compressible miscible displacement and multicomponent gas flow in porous media containing high-permeability fractures and/or low-permeability barriers based on the hybrid-dimensional Darcy's law established in our previous work.The key idea of the model is to describe the permeability of codimension-one fractures and barriers by the Dirac-delta functions. When there are only fractures, delta functions are added to the permeability tensor on the right-hand side of the Darcy's law. In contrast, when there are only barriers, delta functions are added to the inverse of the permeability tensor, which represents the resistance to fluids, on the left-hand side of the Darcy's law. When both appear, delta functions are contained on both sides by the principle of superposition. Thereby, we establish partial differential equations (PDEs) to model fluid flow in fractured porous media, which exempts any requirements on meshes.We adopt the discontinuous Galerkin (DG) method to discretize the model in space and the second order implicit pressure explicit concentration (SIMPEC) method to march in time. The resulting non-conforming discrete fracture model is local mass conservative, flexible for complex geometry and easy to implement. The good performance of the method is demonstrated by several numerical examples.

Publisher

SPE

Reference52 articles.

1. Control-volume Distributed Multi-point Flux Approximation Coupled with a Lower-dimensional Fracture Model;Ahmed;Journal of Computational Physics,2015

2. Domain Decomposition for Flow in Porous Media with Fractures;Alboin,1999

3. Asymptotic and Numerical Modelling of Flows in Fractured Porous Media;Angot;ESAIM: Mathematical Modelling and Numerical Analysis,2009

4. Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks;Barenblatt;Prikl. Mat. Mekh.,1960

5. Cut Finite Elements for Convection in Fractured Domains;Burman;Computers & Fluids,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3