Lifetime Tubular Design: Combining Effects of Corrosion and Mechanical Wear

Author:

Liu Zhengchun1,Samuel Robello1,Gonzales Adolfo1,Kang Yongfeng1

Affiliation:

1. Halliburton

Abstract

Abstract During the lifetime of an oil/gas well, wellbore tubular structure might be subject to combined damage caused by both corrosion and mechanical wear. Therefore, it is necessary to conduct detailed stress analyses including these factors at the stage of tubular design. An integrated well construction workflow was established for life-time well design. The temperatures and casing/tubing loads were obtained through numerical simulations of operations such drilling, stimulation, and production. All these simulations were accomplished using commercial software tools, including a thermal flow simulator and stress analyzer. On one hand, a commercial casing-wear simulator was used to predict the cumulative wear amount. On the other hand, a corrosion simulator was employed to predict pipe metal losses during each operation. The total amount of corrosion loss and mechanical loss were then compared against the maximum allowable wear for a safety check of the design. The corrosion simulator was implemented in a computer program and integrated with the aforementioned commercial software of thermal flow and stress analysis. In a plot of maximum allowable wear versus depth, the curves of predicted wear, predicted corrosion, and predicted total metal loss are superimposed with the maximum allowable wear. This plot gives a straightforward and clear picture of the overall lifetime safety of the design. A field case was studied with those integrated simulations. The production casing internal wear and internal/external corrosion were simulated. The predicted wear and corrosion data were in good agreement with the measured results. Further predictions provide rationales for future maintenance/workover operations. Corrosion simulation and casing wear simulation were coupled with wellbore thermal flow analysis and stress analyses, helping proactively prevent tubular failure during the lifetime of the well. It is therefore valuable to include the integrated workflow during the wellbore tubular design where both corrosion and wear are involved.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3