Optimization of Child Well Hydraulic Fracturing Design: A Bakken Case Study

Author:

Merzoug Ahmed1,Ellafi Abdulaziz2

Affiliation:

1. Texas A&M University

2. University of North Dakota

Abstract

AbstractThe combination of hydraulic fracturing and horizontal drilling unlocked a huge energy potential in the US. The unconventional plays have been developed by drilling several horizontal wells and hydraulically fracturing them to enhance the fluid flow. The implementation of these well can be done at the same time, known as Tank Development; however, due to the high capital expenditure and the increased risks associated with such an approach, in addition to the limited number of available drilling rigs. Operators try to hold the lease first by drilling one well, producing it, then extending the lease with additional wells. The challenge is that by producing from these wells, the stress and pore pressure state changes around the first wells (i.e., parent well). These changes directly affect the hydraulic fracture propagation from the offset wells (i.e., child wells). In this work, we build a numerical that represents a real case study. The model was calibrated using data from (a) Microseismic Depletion Delineation, (b) Microseismic events, (c) 10 years of production. Synthetic offset wells were implemented to run a sensitivity analysis on the well design (well spacing, cluster spacing, injection volume) and to understand how to design better wells that have been influenced by production from a primary well. The simulations were run for 10 years. The results show that wider well spacing results in better production, whereas lower cluster spacing had better production. This study allows operators to design better offset wells drilled next to a depleted parent well in the Bakken.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3