Interpretation of Partitioning Interwell Tracer Tests Using EnKF with Coarse Scale Constraints

Author:

Devegowda Deepak1,Akella Santha2,Datta-Gupta Akhil3,Efendiev Yalchin3

Affiliation:

1. U. of Oklahoma

2. Texas A&M University

3. Texas A&M U.

Abstract

Abstract The success of enhanced recovery processes depends largely on the accurate characterization of the location and distribution of the target oil. The Partitioning Interwell Tracer Test (PITT) is designed to identify the residual oil saturation during waterflooding. In this test a conservative and a partitioning tracer are injected into the reservoir. The conservative tracer travels with the water phase whereas the partitioning tracer dissolves in both water and oil. The separation between the conservative and the partitioning tracer at the producer can be used to infer the residual oil saturation distribution. The interpretation of partitioning tracer tests in the presence of mobile oil is considerably more difficult because the separation of the tracer response depends not only on the partitioning coefficients but also on the spatial distribution of the saturation itself. We propose a two-stage Ensemble Kalman Filter (EnKF) that utilizes the tracer data in conjunction with coarse-scale saturation constraints to identify the fine-scale saturation distribution and associated uncertainties. The coarse-scale saturation distribution can be conveniently obtained via an inversion of the waterflood response, for example water-cut data at the producers. The tracer data are first used to condition the ensemble of fine scale model realizations which are further improved via the coarse-scale constraint. The scale-decomposition of the inverse problem significantly improves the performance of the EnKF and prevents filter divergence as more data are assimilated. We demonstrate the effectiveness of our approach using two and three-dimensional examples. First, we derive the coarse-scale saturation from a streamline-based inversion of the waterflood response. Next, the two-stage EnKF is used to interpret the PITT using the coarse-scale saturation constraint. A performance comparison of our proposed approach with the standard EnKF clearly indicates better characterization of the reservoir heterogeneities and improved estimates of the spatial distribution of bypassed oil.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-line Partition Coefficient Measurement for Oil Field Tracers Utilizing Microfluidic Mixing Chip;Day 1 Sun, February 19, 2023;2023-03-07

2. Water tracers in oilfield applications: Guidelines;Journal of Petroleum Science and Engineering;2012-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3