A Multiscale Workflow for History Matching in Structured and Unstructured Grid Geometries

Author:

Bhark E..1,Rey A..1,Datta-Gupta A..1,Jafarpour B..1

Affiliation:

1. Texas A&M University

Abstract

Summary We present the development and field application of a workflow for multiscale reservoir-model calibration that seamlessly integrates production data into the reservoir description from the facies to the grid-cell scale. To start with, the permeability field is parameterized using a novel grid-connectivity-based transformation basis that can be applied with any model geometry, including unstructured and corner-point grids. The parameterization basis functions emerge from spectral decomposition of the grid-connectivity Laplacian and are related to the structural harmonics of the grid. To reconcile data with model resolution during history matching, we first use the coarsest-scale basis functions to identify the large-scale variability. Additional smaller-scale basis elements are then adaptively incorporated to successively refine the model to a level supported by data resolution. During refinement, the inclusion of more detailed basis functions into the parameterization is determined by generic modal frequency when the prior model is unavailable or by using prior information when available. In the final step of the workflow, a streamline-based inversion is performed to locally adjust the reservoir model at grid-cell resolution along preferential-flow paths defined during the coarser-scale parameterization. We demonstrate the suitability and effectiveness of the developed workflow through application to an offshore turbidite reservoir with frequent well intervention, including shut-ins and recompletions. The static model has over 300,000 cells, a complex channelized interpretation with faults, four injector/producer pairs with deviated wells, and over eight years of production history, including water cut and pressure data. The grid-connectivity-based parameterization effectively updates the prior regional permeability at scales and in locations warranted by the data, while preserving the geologic continuity and avoiding ad hoc redefinition of regions given the sparse well pattern. The multiscale calibrated-permeability field indicates flow communication previously unrecognized in static geologic interpretation or manual history matching.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3