Principles and Advantages of High-Power Lasers for Descaling Surface Equipment

Author:

San Roman Alerigi Damian Pablo1,Mutairi Saad1,Batarseh Sameeh1,Assiri Wisam1

Affiliation:

1. Saudi Aramco PE&D

Abstract

Abstract This work examines the physical principles and effects of high-power laser (HPL) descaling of surface equipment. This contactless technique can fully remove sulfide or calcium carbonate scale without compromising the integrity of the substrate. The method is environmentally friendly, waterless, and energy efficient. It could do away with chemical and mechanical methods for descaling, which have shown low efficiency treating fully-plugged deposits and environmental risks due to chemical use. This paper describes the process through an analysis of its efficiency and impact on the substrate material, the environment, and the implications to production reliability. HPL descaling is described by a multiphysics approach that involves thermal and mechanical processes. The laser causes a phase-change on all or some of the constituents of the scale. This interaction results in spallation, dissociation, and at high energy sublimation. Laser-matter interaction is precise. It produces a small heat affected zone (HAZ) that decays exponentially away from the illuminated area. Thus, the effect of the laser on the surrounding material is minimal to none. Ultrasonic, multi-spectral imaging, microscopy, and statistical analysis are used to analyze the effect of the laser on the substrate material. The environmental impact of the HPL process is compared to existing methods; it is calculated via the carbon intensity of each step and supporting equipment involved in the processes, as well as by its impact to material reuse, waste reduction, and recycling. Scaling can be detrimental to oil and gas production because it may hinder the flow of fluids from and to the well. In surface systems, scale deposits reduce the internal diameter of equipment, thus limiting flow-rate capacity and causing pressure drops across the production network. From a physics perspective, the process is effective because the energy can be delivered with extreme precision on the target. The efficiency of the process depends on the coupling of the HPL with the target and the rate of debris evacuation. The physics are complex but can be optimized through machine learning (e.g. reinforcement learning). The results of the comprehensive characterization demonstrate that HPL descaling preserves the integrity of the substrate. HPL descaling could increase the lifetime of surface equipment affected by scale, and hence contribute to reuse and recycling. The adverse effects of scaling make prevention and removal crucial to the energy industry. Existing methods of scale-removal rely on mechanical or chemical scrubbing, which show varying degrees of success and may deteriorate the substrate. HPL descaling is an environmentally-friendly solution for production reliability; it enables complete descaling and the safe reuse or recycling of scaled equipment.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3