New Insights into Carbonate Matrix Acidizing Treatments: A Mathematical and Experimental Study

Author:

Ali Mahmoud T.1,Nasr-El-Din Hisham A.1

Affiliation:

1. Texas A&M University

Abstract

Summary The design process of carbonate matrix acidizing treatments requires coring and conducting linear, radial coreflood experiments. With the current environment revolving around cutting costs, it has become increasingly important to accurately design cost-effective acidizing treatments. This work aims to introduce a novel approach to predicting the performance of acid treatments in the field using log data only. A radial reactive flow simulator, using porosity distributed from logs, is used to provide accurate predictions without the need for experiments. Coreflood acidizing experiments at 150 and 200°F with two acid concentrations were studied. A reactive flow simulator was built using porosity distribution derived from computed-tomography (CT) scans and tuned to match experimental data. A new radial simulation model of 3.25-ft radius was used to study acid propagation under field conditions. For accurate predictions, porosity was distributed using values derived from cores’ CT scans. Simulation results were compared with traditional 1D models. Different porosity distributions, including gamma distributions, were used in the radial model. The reactive flow simulator was able to accurately capture wormhole propagation inside the linear core. A greater than 90% match between the experimental and the simulated acid pore volume (PV) to breakthrough (PVBT) was obtained using two acid concentrations’ different temperatures. The simulation results from the radial field-scale model show that the optimal velocity can be higher or lower than those predicted from laboratory experiments. Accordingly, caution must be taken when linear coreflood data are used to predict acid propagation in the field. The simulations showed that traditional upscaling models overpredict acid volumes; the predicted volumes are double at moderate to high injection rates. Models using statistically distributed porosity can provide accurate acid-propagation predictions, with a relative percentage error of less than 25% at extremely high injection rates. This work introduces an accurate model using porosity directly from logs to predict acid performance while avoiding expensive designs. The simulation results reveal that traditional designs overpredict acid volumes required for field treatments. The statistically distributed porosity can be used as a substitute for CT-scan-derived porosity with a low effect on model predictability. The reactive flow simulator can accurately match experimental data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3