Analysis of Secondary and Tertiary High-Pressure Gas Injection at Different Miscibility Conditions: Mechanistic Study

Author:

Norouzi Hamidreza1,Rostami Behzad1,Khosravi Maryam2,Afra Mohammad Javad1

Affiliation:

1. University of Tehran

2. National Iranian Oil Company

Abstract

Summary In the current survey, the time required to rupture the water film shielding the oil as a result of oil swelling caused by the diffusion of dissolved gas in the water phase and trapped oil behind it has been investigated in porous medium at high pressure and temperature. To study the active mechanisms, the experiments have been conducted with two different types of injectants: carbon dioxide (CO2) and methane (with different solubility in water), under different miscibility conditions at equal reduced pressures. Experimental observations have been interpreted using theoretical studies. Furthermore, the time of water-film rupture has been identified in production data and matched by an analytical model. This time and its monitoring during various gas-injectant types and regimes under reservoir conditions have not been previously addressed. The results show that water film reduces the performance of oil recovery by limiting the interface of oil and gas phases. Under such a condition, the best scenario is miscible gas injection because the gas can effectively swell the oil and rupture the water shield. At miscible and near-miscible conditions, the time required to eliminate the water film increases as the injectant solubility in water decreases; however, there is a negligible difference at the immiscible regime. The trend of oil-recovery curves after rupture of the water film shows that oil swelling is one of the main mechanisms involved in water-trapped oil recovery. These results suggest practical guidelines to better understand the effect of the water-shielding phenomenon in the field of tertiary gas injection. The outcome of this integrated study could effectively increase the knowledge of shielded oil recovery using different gas-injectant types under various miscibility conditions and could prepare the required basis for compositional simulation of waterflooded oil production during tertiary gas injection.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3