Volumes of Liquid Hydrocarbons at High Temperatures and Pressures

Author:

Alani Ghalib H.1,Kennedy Harvey T.1

Affiliation:

1. Texas Petroleum Research Committee

Abstract

Published in Petroleum Transactions, AIME, Volume 219, 1960, pages 288–292. Abstract One of the major difficulties in predicting the performance of oil reservoirs from their early pressure history lies in the uncertainty of estimating the volume of the liquid hydrocarbons contained in them. As a first step in filling this need, an equation was developed to determine the molal liquid volume of pure hydrocarbons over a wide range of temperature and pressure. The second step consisted of adapting the equation to apply to mixtures, with the heavy hydrocarbons expressed as C7+. The equations are similar in form to van der Waals' equation, but the constants a and b are considered as functions of temperature. In addition to the gas constant R, there are four constants characteristic of each hydrocarbon. When compared with experimental values found in the literature, the average absolute deviation in the calculated molal volumes is found to be a maximum of 0.33 per cent for any of the pure liquid hydrocarbons studied. This maximum deviation was that found when comparing the calculated and observed values over a temperature range of 86° to 482°F and a pressure range from the bubble-point to 10,000 psia. The equations expressing the correlation for mixtures were developed from 647 experimental measurements of volume on 47 bottom-hole samples covering a temperature range of 72° to 250°F and a pressure range from bubble-point to 5,000 psig. The average absolute deviation was found to be 1.6 per cent with the maximum for any measurement of 4.9 per cent. Introduction Accurate information of the pressure-volume-temperature behavior of hydrocarbon liquids is of considerable importance in the field of both applied and theoretical science and, especially, in the solution of petroleum reservoir engineering problems. These PVT relationships can be expressed graphically, in tabular form or as equations of state.

Publisher

Society of Petroleum Engineers (SPE)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vapor-Liquid Phase Equilibria;Reservoir Engineering Handbook;2019

2. An accurate method to generate composite PVT data for black oil simulation;Journal of Petroleum Science and Engineering;2017-08

3. PVT Properties of Crude Oils;Equations of State and PVT Analysis;2016

4. Prediction of Undersaturated Crude Oil Density Using Gaussian Process Regression;Petroleum Science and Technology;2013-02-15

5. References;Working Guide to Vapor-liquid Phase Equilibria Calculations;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3