Field Validation of a Universally Applicable Condition-Based Maintenance System for Mud Pumps

Author:

Yoon Dongyoung1ORCID,Ashok Pradeepkumar2ORCID,van Oort Eric2ORCID,Annaiyappa Pradeep3ORCID,Abe Shungo4ORCID,Ebitani Akira4

Affiliation:

1. The University of Texas at Austin (Corresponding author)

2. The University of Texas at Austin

3. Nabors Industries

4. Japan Organization for Metals and Energy Security (JOGMEC)

Abstract

Summary Although mud pumps are considered to be critical rig equipment, their health monitoring currently still relies on infrequent human observation and monitoring. This approach often fails to detect pump damage at an early stage, resulting in nonproductive time (NPT) and increased well construction costs when initial damage progresses and pumps go down unexpectedly and catastrophically. Automated approaches to condition-based maintenance (CBM) of mud pumps to date have failed due to the lack of a generalized solution applicable to any pump type and/or operating conditions. This paper presents a field-validated universally applicable solution to mud pump CBM. The system uses a sensor package that includes acoustic emission sensors and accelerometers in combination with anomaly detection deep learning data analysis to pinpoint any abnormal behavior of the pump and its components. The deep learning models are trained with undamaged normal state data only, and a damage score characterizing the extent of damage to the mud pump is calculated to identify the earliest signs of damage. The system can then generate alerts to notify the rig crew of the damage level of key mud pump components, prompting proactive maintenance actions. Field tests were conducted while drilling an unconventional shale well in west Texas, USA, and a geothermal well in Japan (i.e., two very different drilling operations) to verify the feasibility and general applicability of the developed pump CBM solution. Sensors were attached to pump modules, and data were collected and analyzed using the deep learning models during drilling operations. During the field tests, different hyperparameters and features were compared to select the most effective ones for identifying damage while at the same time delivering low false positive rates (i.e., false alarms during normal state pump operation). The system required only several hours of normal state data for training with no prior pump information. Moreover, it correctly identified the degradation of the pump, swabs, and valves and produced early alerts several hours (in the range of 0.5–17 hours) before actual pump maintenance action was taken by the rig crew. This generally applicable pump CBM system eliminates the environmental, health, and safety concerns that can occur during human-based observations of mud pump health and avoids unnecessary NPT associated with catastrophic pump failures. The final version of this system will be a fully self-contained magnetically attachable box containing sensors and a processor, generating simple indicators for recommending proactive pump maintenance tasks when needed.

Publisher

Society of Petroleum Engineers (SPE)

Reference19 articles.

1. An Overview of Time-Based and Condition-Based Maintenance in Industrial Application;Ahmad;Computers Ind Eng,2012

2. How the Drilling Fluids Can Be Made More Efficient by Using Nanomaterials;Al-Yasiri;American J Nano Res Applications,2015

3. Technical Problems of Mud Pumps on Ultra Deepwater Drilling Rigs;Bejger;J of the Maritime University of Szczecin,2013

4. Applied Drilling Engineering

5. A Review of Feature Extraction Methods in Vibration-Based Condition Monitoring and Its Application for Degradation Trend Estimation of Low-Speed Slew Bearing;Caesarendra;Machines,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3