Modeling the Effects of Salinity, Polymer Rheology, Temperature, and Reservoir Wettability on the Performance of In-Depth Gel Treatment Coupled with Surfactant and Polymer Flooding

Author:

Khamees Tariq K.1,Flori Ralph E.1,Alsubaih Ahmed A.2,Alhuraishawy Ali K.3

Affiliation:

1. Missouri University of Science & Technology

2. Basra Oil Company

3. Missan Oil Company

Abstract

Abstract In-depth gel treatment is a chemical EOR process used to improve the sweep efficiency from heterogeneous reservoirs with crossflow. However, if these reservoirs are saturated with viscous oil, polymer and surfactant flooding should be combined with in-depth gel treatment. Thus, in this study, a 3D model using the UTGEL simulator was built to model in-depth gel treatment combined with surfactant slug and polymer solution. The model was represented by one quarter of the five-spot pattern with eight layers where two thief zones are located in the middle of the model. The thief zones had a permeability of 1500 md with a total thickness of 20 ft, while the rest of the layers had a permeability of 100 md with a total thickness of 200 ft. The gel system consisted of a polyacrylamide/Cr(VI)/thiourea solution, which is considered an in-situ gelation system. Gelant solution was injected for 60 days when the water cut in the model reached 65%, followed by surfactant slug for 2 years, polymer solution for 3 years, and then post-water injection for the rest of the simulation time. The concentrations of the surfactant ranged from 0.01 to 0.2 wt.%, while the polymer concentration was 1,000 ppm. The injection rate was 1,070 bbl/day during all flooding and treatment processes. The results showed that it is imperative to implement surfactant with gel treatment to reduce the interfacial tension between water and oil phases and to alter the wettability of the reservoir rocks. Thus, gel treatment alone or gel followed by polymer was not as efficient as the injection of a surfactant slug. The results also showed that as the reservoir temperature increased, the overall performance of gel, polymer, and surfactant decreased. Therefore, the higher the temperature, the lower the recovery factor. The results also revealed the importance of viscoelastic behavior of the HPAM polymer solution where higher results for both water-wet and oil-wet conditions were obtained compared to shear-thinning behavior only. Moreover, the results revealed interesting behavior regarding the concentration of the surfactant, where the recovery factor increased as the concentration of the surfactant increased in oil-wet conditions. However, in water-wet conditions, the results were unpromising and unfavorable. Furthermore, the injection of surfactant directly after the gel treatment was more effective in improving the sweep efficiency than the injection of polymer directly after the gel treatment. Finally, as the salinity of makeup water and/or reservoir brine increased, the recovery factor decreased for both water and oil-wet systems. This is because, as salinity increased, the adsorption of both polymer and surfactant increased and the polymer viscosity decreased. Furthermore, the presence of divalent cations such as Ca+2 and Mg+2, would have a negative impact on overall treatment.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3