Matrix Acidizing: A Laboratory and Field Investigation of Sludge Formation and Removal of Oil-Based Drilling Mud Filter Cake

Author:

Almubarak Tariq1,AlKhaldi Mohammed2,Ng Jun Hong1,Nasr-El-Din Hisham A.1

Affiliation:

1. Texas A&M University

2. Saudi Aramco

Abstract

Summary Hydrochloric and organic acids have been extensively used to enhance well productivity or injectivity in tight carbonate formations (10 to 50 md). The use of these acids, however, can cause instances of complete production loss. This is especially common due to incompatibilities of the acidizing fluid and oil, which can lead to the formation of acid/oil emulsions and sludge formation. Consequently, it is necessary to properly identify and remove such emulsions or precipitations without causing any further damage. Compatibility studies were conducted using representative crude samples and hydrochloric acid (HCl). The experiments were conducted at various temperatures up to 240°F using high-pressure/high-temperature (HP/HT) aging cells for both live and spent acid samples, in which some of the experiments included an antisludge, an iron-control agent, and a demulsifier. In addition, another set of experiments was performed in the presence of ferric ions (Fe3+). The total iron concentration in these experiments was varied between 0 and1,000 ppm. The results showed that commonly used acid systems were not compatible with representative oil field samples. The amount of sludge formed and the stability of formed emulsions increased significantly in the presence of ferric ions and was more severe in the presence of hydrogen sulfide (H2S). Using a field case, this paper will cover the methodology used to ascertain the source of formation damage from acidizing, study the different factors that influence the formation of acid/oil emulsion and sludge formation mechanism, and show how they can be removed. In this example, acid/oil emulsions, sludge formation, and improper drilling mud filter-cake removal were the reasons behind the production loss. However, the methodology can be expanded to cater the many acidizing failure cases faced in the industry worldwide.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3