Reduced-Polymer-Loading, High-Temperature Fracturing Fluids by Use of Nanocrosslinkers

Author:

Liang Feng1,Al-Muntasheri Ghaithan2,Ow Hooisweng3,Cox Jason3

Affiliation:

1. Aramco Services Company: Aramco Research Center–Houston

2. Saudi Aramco

3. Aramco Services Company: Aramco Research Center–Boston

Abstract

Summary In the quest to discover more natural-gas resources, considerable attention has been devoted to finding and extracting gas locked within tight formations with permeability in the nano- to microdarcy range. The main challenges associated with working in such formations are the intrinsically high-temperature and high-pressure bottom conditions. For formations with bottomhole temperatures at approximately 350–400°F, traditional hydraulic-fracturing fluids that use crosslinked polysaccharide gels, such as guar and its derivatives, are not suitable because of significant polymer breakdown in this temperature range. Fracturing fluids that can work at these temperatures require thermally stable synthetic polymers such as acrylamide-based polymers. However, such polymers have to be used at very-high concentrations to suspend proppants. The high-polymer concentrations make it very difficult to completely degrade at the end of a fracturing operation. As a consequence, formation damage by polymer residue can reduce formation conductivity to gas flow. This paper addresses the shortcomings of the current state-of-the-art high-temperature fracturing fluids and focuses on developing a less-damaging, high-temperature-stable fluid that can be used at temperatures up to 400°F. A laboratory study was conducted with this novel system, which comprises a synthetic acrylamide-based copolymer gelling agent and is capable of being crosslinked with an amine-containing polymer-coated nanosized particulate crosslinker (nanocrosslinker). The laboratory data have demonstrated that the temperature stability of the crosslinked fluid is much better than that of a similar fluid lacking the nanocrosslinker. The nanocrosslinker allows the novel fluid system to operate at significantly lower polymer concentrations (25–45 lbm/1,000 gal) compared with current commercial fluid systems (50–87 lbm/1,000 gal) designed for temperatures from 350 to 400°F. This paper presents results from rheological studies that demonstrate superior crosslinking performance and thermal stability in this temperature range. This fracturing-fluid system has sufficient proppant-carrying viscosity, and allows for efficient cleanup by use of an oxidizer-type breaker. Low polymer loading and little or no polymer residue are anticipated to facilitate efficient cleanup, reduced formation damage, better fluid conductivity, and enhanced production rates. Laboratory results from proppant-pack regained-conductivity tests are also presented.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3