Integrating Pipe Fractional Flow Theory with Fully Compositional Wellbore Models

Author:

Zheng Shuang1,Sharma Mukul2

Affiliation:

1. The University of Texas at Austin, now with Aramco Americas

2. The University of Texas at Austin

Abstract

AbstractMulti-phase compositional wellbore flow is important in determining the flow and pressure drop in oil, gas, and geothermal wells. These effects become increasingly important in long laterals with multiple locations for fluid influx. Complex hydrocarbon phase behavior such as change in the number of phases, phase flipping, gas slippage can happen in the wellbore because of changes in pressure, temperature and inflow fluid rate and composition along the wellbore. This paper introduces a new wellbore model which integrates fully compositional fluid flow with an energy balance and pipe fractional-flow theory with multiple points of fluid entry along the wellbore.Four sets of governing equations: component mass conservation, momentum conservation (pipe fractional flow theory), composition conservation and energy balance are solved fully implicitly along the wellbore. This is then fully implicitly coupled with the flow and energy balance equations in the reservoir and fracture domains. The primary unknowns along the wellbore (total flow rate, hydrocarbon component composition, water saturation, pressure, and temperature) can then be obtained. Flash calculations are used to calculate the hydrocarbon phase saturation, density, viscosity, etc. and the flow rate of each phase is obtained from the fractional flow theory given the local flow rate and saturations.In the first case, we study the reservoir-wellbore flow in a gas condensate reservoir with 16 hydrocarbon components. As the pressure drops, an oil phase drops out of the single phase gas condensate, first in the wellbore and then in the reservoir. In a second case, we simulate CO2 flooding in a black-oil reservoir. Reservoir cooling is observed near the injection wellbore and an increased CO2 composition is observed in the produced oil from the production wellbore. In the third case, we study a low permeability volatile oil reservoir with 14 hydrocarbon components. Production from a hydraulically fractured horizontal wellbore is simulated considering the reservoir-fracture-wellbore flow. We observe that as the pressure drops in the wellbore, gas is liberated from the oil phase and this changes the wellbore pressure drop considerably. The lighter component compositions decrease with time while the heavier component compositions increase with time because of the liquid holdup effect. In the fourth case, we showcase a stand-alone wellbore model integrated with point sources.This paper fully integrates a pipe-fractional flow formulation with compositional wellbore flow, and an energy balance for the first time. This allows the model to be used directly with compositional reservoir simulators. The wellbore mesh is automatically generated and coupled with the reservoir/fracture mesh to allow for an integrated and seamless simulation from the reservoir to the surface facility. This model allows engineers to accurately account for the pressure drop and phase behavior within the wellbore when simulating the production/injection of complex fluids.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3