Advanced Reservoir Modeling In Desorption-Controlled Reservoirs

Author:

Reeves Scott1,Pekot Larry1

Affiliation:

1. Advanced Resources International, Arlington, Virginia

Abstract

Abstract Reservoir models typically utilized for desorption-controlled reservoirs such as coals and gas shales possess dual-porosity/ single-permeability characteristics. In this case dual-porosity means that two in-situ locations exist that can be used for gas storage, adsorbed within the matrix and in the free form in the cleat system. Single-permeability, which refers to the cleat system, is the only permeability network that gas or water must flow through to reach the wellbore. While this approach to modeling coals and shales has become accepted practice, experience has shown that the models can frequently be in gross error when forecasting well or field performance based on limited reservoir and/or production data; gas production is usually over-predicted and water production under-predicted. The implications for economic decision-making in an exploration mode are obvious, and there are many examples of projects that have suffered from this very problem. Further, reservoir parameters derived from history-matching, when historical gas production does exist, are commonly found to be inconsistent with measured permeability and gas sorption/content data. While there has been considerable effort focused on improved data collection procedures, such as well testing and gas content measurement for example, these problems persist. While performing reservoir studies in the Antrim shale and low-rank coal plays throughout the world, it became clear that the accepted assumption of gas desorbing directly from the coal matrix into the cleat system is not entirely valid. In practice, gas production occurs much later than the models predict, and cannot be adequately explained though the normal parameters of sorption time, permeability, relative permeability, etc. Analysis of core and other data suggests that another porosity and permeability system is required to account for this effect, specifically within the matrix blocks themselves. An advanced, triple-porosity/dual-permeability model has therefore been developed, in which gas desorbs from the internal matrix block surfaces, migrates via conventional Darcy flow through micro-permeability matrix, and into the cleat system where it then flows to the wellbore. Water can also be stored both within the matrix blocks and in the cleat system. In essence, this model requires that desorbed gas must work its way through the matrix before reaching the cleat system, and must establish a relative permeability to gas within the matrix block before it can do so. This geometry is similar to conventional dual-porosity models, with the addition of an adsorbed gas component. Comparisons of this new model versus the historical modeling approach confirm that the new model predicts lower gas and higher water production rates, consistent with field evidence. Further, more accurate production forecasts can be achieved using measured well test information (for the cleat permeability), low cleat porosities (which are known to exist), and lab-derived porosity and permeability data for the matrix block properties. This paper presents the historical accuracy problem with reservoir simulation in desorption-controlled reservoirs, the practical theory behind the new model, comparisons between the new and conventional models, and some example applications.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3