Proxy-Based Work Flow for a Priori Evaluation of Data-Acquisition Programs

Author:

He Jincong1,Xie Jiang1,Sarma Pallav1,Wen Xian-Huan2,Chen Wen H.2,Kamath Jairam2

Affiliation:

1. (formerly with Chevron Energy Technology Company)

2. Chevron Energy Technology Company

Abstract

Summary Data-acquisition programs, such as surveillance and pilot, play an important role in reservoir management, and are crucial for minimizing subsurface risks and improving decision quality. Optimal design of the data-acquisition plan requires predicting the performance (e.g., in terms of the expected amount of uncertainty reduction in an objective function) of a given design before it is implemented. Because the data from the acquisition program are uncertain at the time of the analysis, multiple history-matching runs are required for different plausible realizations of the observed data to evaluate the expected effectiveness of the program in reducing uncertainty. As such, the computational cost may be prohibitive because the number of reservoir simulations needed for the multiple history-matching runs would be substantial. This paper proposes a framework on the basis of proxies and rejection sampling (filtering) to perform the multiple history-matching runs with a manageable number of reservoir simulations. The work flow proposed does not depend on the linear Gaussian assumption that is a common, yet questionable, assumption in existing methods. The work flow also enables both qualitative and quantitative analysis of a surveillance plan. Qualitatively, heavy-hitter alignment analysis for the objective function and the observed data provides actionable measures for screening different surveillance designs. Quantitatively, the evaluation of expected uncertainty reduction from different surveillance plans allows for optimal design and selection of surveillance plans.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3