Wellbore-Stability Analysis by Integrating a Modified Hoek-Brown Failure Criterion With Dual-Porochemoelectroelastic Theory (includes associated erratum)

Author:

Liu Chao1,Han Yanhui1,Liu Hui–Hai1,Abousleiman Younane N.2

Affiliation:

1. Aramco Services Company

2. University of Oklahoma

Abstract

Summary When drilling through naturally fractured formations, the existence of natural fractures affects the fluid diffusion and stress distribution around the wellbore and induces degradation of rock strength. For chemically active formations, such as shale, the chemical–potential difference between the drilling mud and the shale–clay matrix further complicates the nonmonotonic coupled pore–pressure processes in and around the wellbore. In this work, we apply a recently formulated theory of dual–porosity/permeability porochemoelectroelasticity to predict the time evolution of mud–weight windows, while calculating stresses and pore pressure around an inclined wellbore drilled in a fractured shale formation. The effects of natural–fracture geometric and spatial distributions coupled with the chemical activity are considered in the wellbore–stability analysis. To account for the degrading effect of the fractured shale matrix on the bulk rock strength, a modified Hoek–Brown (MHB) criterion is developed to more closely describe the in–situ state of stress effects on the compressive shearing strength at great depth. Compared with the original Hoek–Brown (HB) failure criterion, the MHB criterion considers the influence of the intermediate principal stress and thus shows better agreement with true–triaxial data for various rocks at varying stress levels. The MHB criterion converges to the original HB criterion when the confining in–situ stresses are equal. Two field case studies indicate that this novel integrative methodology is capable of predicting the operational drilling–mud–weight windows used in these two cases. Another advantage of this newly developed technique is that it can be used as a back–analysis tool to estimate the fracture–matrix permeability from field operational data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3