Numerical and Experimental Study on the Effects of Rheological Behavior of Drilling Fluid on the Performance of the Fluidic Down-the-Hole Hammer

Author:

Ge Dong1,Peng Jianming2,Zhang Guang2,Cheng Jingqing2,Zhang Pengyu2,Bo Kun2

Affiliation:

1. College of Construction Engineering, Jilin University (Corresponding author)

2. College of Construction Engineering, Jilin University

Abstract

Summary In the field of oil and gas exploration, the fluidic down-the-hole (DTH) hammer has frequently been used to solve the challenges associated with hard rock drilling and excessive friction along the drillstring. Appropriate performance prediction for drilling tools is particularly important for the drilling operation. Previous experiments showed that the performance prediction scheme determined by the water was not accurate for fluidic DTH hammer driven by mud, which is a typical pseudoplastic power-law fluid. Based on the results, compared with water, the rheological behavior of the pseudoplastic power-law fluid can be significant for the flow behavior in the fluidic oscillator with a lower supply flow rate. However, for a normal or higher level of supply flow rate, because of the shear diluting effect of the pseudoplastic power-law fluid, the influence of rheology behavior of drilling mud on the performance of fluidic DTH hammer was not apparent. The temperature of the drilling fluid and barite weighting agent can also affect the performance of the fluidic DTH hammer by affecting the rheological properties of the drilling mud. In this paper, numerical simulation and experiments are used for qualitative discussion and conclusion verification, respectively.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3