Experimental Investigation of Two-Phase Flow Properties of Heterogeneous Rocks Based on X-Ray Microfocus Radiography

Author:

Aérens P.1ORCID,Espinoza D. N.2ORCID,Torres-Verdín C.3ORCID

Affiliation:

1. The University of Texas at Austin (currently with Halliburton)

2. The University of Texas at Austin

3. The University of Texas at Austin (Corresponding author)

Abstract

Summary An uncommon facet of formation evaluation is the assessment of flow-related in-situ properties of rocks. Most of the models used to describe two-phase flow properties of porous rocks assume homogeneous and/or isotropic media, which is hardly the case with actual reservoir rocks, regardless of scale; carbonates and grain-laminated sandstones are but two common examples of this situation. The degree of spatial complexity of rocks and its effect on the mobility of hydrocarbons are of paramount importance for the description of multiphase fluid flow in most contemporary reservoirs. There is thus a need for experimental and numerical methods that integrate all salient details about fluid-fluid and rock-fluid interactions. Such hybrid, laboratory-simulation projects are necessary to develop realistic models of fractional flow in complex rocks, i.e., saturation-dependent capillary pressure and relative permeability. Furthermore, these two crucial properties are usually measured independently. Capillary pressure is typically assessed using static measurements and unrealistic pressure conditions, whereas relative permeability is evaluated dynamically. Consequently, the disparity between the nature of the two experimental procedures often results in a potentially significant loss of information. We document a new high-resolution visualization technique that provides experimental insight to quantify fluid saturation patterns in heterogeneous rocks which allow for the simultaneous and dynamic evaluation of two-phase flow properties. The experimental apparatus consists of an X-ray microfocus scanner and an automated syringe pump. Rather than using traditional cylindrical cores, thin rectangular rock samples are examined, their thickness being one order of magnitude smaller than the remaining two dimensions. During the experiment, the core is scanned quasicontinuously while the fluids are being injected, allowing for time-lapse visualization of the flood front. Numerical simulations are then conducted to match the experimental data and quantify effective saturation-dependent relative permeability and capillary pressure. The experimental results indicate that flow patterns and in-situ saturations are highly dependent on the nature of the heterogeneity and bedding-plane orientation during both imbibition and drainage cycles. In homogeneous rocks, fluid displacement approaches piston-like behavior. The assessment of capillary pressure and relative permeability is performed by examining the time-lapse water saturation profiles resulting from fluid displacement. In spatially complex rocks, high-resolution time-lapse images reveal preferential flow paths along high-permeability sections and a lowered sweep efficiency. Our experimental procedure emphasizes that capillary pressure and transmissibility differences play an important role in fluid-saturation distribution and sweep efficiency at late times. The method is fast and reliable to assess mixing laws for fluid-transport properties of rocks in spatially complex formations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3