Application of Matchstick Geometry To Stress Dependent Permeability in Coals

Author:

Seidle J.P.1,Jeansonne M.W.1,Erickson D.J.1

Affiliation:

1. Amoco Production Co.

Abstract

SPE Members Abstract Several investigators have reported coal permeability decreases with increasing stress, but no conceptual model has been advanced to explain this effect. To better understand the permeability of stressed coal, a theoretical and experimental program was undertaken. A common naturally fractured reservoir geometry, a collection of matchsticks, was extended to stressed coalbeds and tested against laboratory measurements using samples from the San Juan and Warrior Basins. Good agreement was obtained between theoretical behavior and laboratory data, Equations are presented for converting laboratory measured stress-permeability data to (a) in-situ permeability as a function of depth of burial in a basin, and (b) to reservoir permeability during coalbed depletion. Coal cleat compressibility, analogous to pore volume compressibility of conventional reservoirs, has historically been difficult and expensive to measure and the results of such measurements are often ambiguous. A method is presented for calculating cleat volume compressibility from stress permeability experiments, resulting in considerable savings of both time and money. Stress-permeability and cleat volume compressibility results reported here are compared with those published in the literature. Evidence in the literature indicates that coal matrix shrinks when gas is desorbed, increasing cleat permeability. Assuming a matchstick geometry and using a coal matrix shrinkage coefficient reported in the literature, the increase in cleat permeability due to matrix shrinkage was calculated. The increase in permeability due to matrix shrinkage during depletion is compared with the decrease in permeability due to increased stress. Introduction Coal deposits are an important gas resource. Producibility of that gas depends on many factors, one of the most important being coalbed permeability. Several previous studies of coal permeability and compressibility have been published and are reviewed in Puri and Seidle. In summary, nine studies showed permeability decreased exponentially as net confining stress increased. All previous experimental work encountered similar difficulties in (1) obtaining well cleated, competent samples, (2) development of sample preparation techniques which did not harm coal samples, (3) equipment constraints which dictated use of experimental stress regimes not representative of in-situ coals, and (4) extreme hysteresis, precluding replication of results from a sample. Theoretical models of coal permeability were based upon conventional sedimentary rock models, not those of naturally fractured reservoirs. The present study was undertaken to:develop a theoretical expression for coal permeability as a function of stress which reflects the naturally fractured nature of a coal deposit, andto measure permeability as a function of stress for selected coals. As work progressed, it became apparent cleat volume compressibility and matrix shrinkage effects could be addressed and the following objectives were added:to fit laboratory results to the theoretical relation to determine cleat volume compressibilities, andto calculate the effect of desorption-induced matrix shrinkage on coal permeability. 1. Theoretical Permeability-Stress Relation Coal deposits are naturally fractured gas reservoirs. These natural fractures form a closely-spaced, orthogonal network called cleats. P. 433^

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3