Environmentally Acceptable Compositions Comprising Nanomaterials for Plugging and Sealing Subterranean Formations

Author:

Patil Prajakta1,Kalgaonkar Rajendra1

Affiliation:

1. Halliburton

Abstract

Abstract High water production greatly affects the economic life of producing wells and is a serious problem in the oil industry. Excessive water cut is also responsible for many oilfield-related damage mechanisms, such as scale deposition, fines migration, corrosion, etc. Nanomaterials, such as nanosilica, in combination with chelating agents, could be used for plugging and sealing water-or gas-producing zones (bottom-water coning, gas coning, natural fractures, etc.), thus improving oil recovery. The nanosilica used in design of water shutoff is an inorganic material with properties of no dissolution or aggregation in a liquid environment. Moreover, the entire system, including the chelating agent, is compatible with reservoir fluids and is environmentally acceptable. The particle size of nanosilica greatly influences the structural properties of the material. These aspects, in turn, exhibit a strong effect on chemical reactivity. The smaller particle size of nanosilica than previously used silica products generates increased surface area and interface atoms, which in turn increases the surface free energy and associated structural perturbations. This paper presents the development of a novel, environmentally acceptable conformance sealant that incorporates nanosilica and an activator. Different chelating agents, which are also non-toxic and biodegradable, are used as activators in this conformance evaluation. The newly developed system can effectively prevent water and gas flow in BHSTs up to 300°F. The static gelation times were evaluated at different temperatures up to 300°F. An increase in temperature caused an increase in the particle collision, which led to lower gelation times. The effects of pH and concentration of activators on gelation times of the new conformance system were also studied. The gelation time could be controlled by adjusting the concentration of the activator, which is advantageous because it allows the sealant to remain pumpable over predictable periods of time.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3