Smartwater Synergy with Chemical EOR: Studying the Potential Synergy with Surfactants

Author:

Sofi Abdulkareem1ORCID,Wang Jinxun2ORCID,Salaün Mathieu3ORCID,Rousseau David4ORCID,Morvan Mikel3ORCID,Ayirala Subhash C.1ORCID

Affiliation:

1. Saudi Aramco

2. Saudi Aramco (Corresponding author)

3. Solvay

4. IFP Energies nouvelles

Abstract

Summary The potential synergy between smartwater and various enhanced oil recovery (EOR) processes has recently attracted significant attention. In previous work, we demonstrated such favorable synergy for polymer floods not only from a viscosity standpoint but also in terms of wettability. Recent studies suggest that smartwater synergy might even extend to surfactant floods. In this work, we investigate the potential synergy between smartwater and surfactant flooding. Opposed to previous work, the potential synergy is investigated from ground zero. We concurrently developed two surfactant formulations for conventional high-salinity injection water and low-salinity smartwater. To design the optimal surfactant-polymer (SP) formulations, we followed a systematic all-inclusive laboratory workflow. Oil displacement studies were performed in preserved core samples using the two developed formulations with conventional injection water and smartwater. The results demonstrated the promising potential of binary surfactant mixtures of olefin sulfonate (OS) and alkyl glyceryl ether sulfonate (AGES) for both waters. The designed binary formulations were able to form Winsor Type III emulsions besides achieving ultralow interfacial tensions (IFTs). Most importantly, in terms of oil displacement, the developed SP formulations in both injection water and low-salinity smartwater were capable of recovering more than 60% of the remaining oil post waterflooding. A key novelty of this work is that it investigates the potential synergy between smartwater and surfactant-based processes from the initial step of surfactant formulation design. Through well-designed from-scratch evaluation, we demonstrate that surfactant-based processes exhibit limited synergies with smartwater. Comparable processes in terms of performance can be designed for both high-salinity and low-salinity waters. It is also quite possible that the synergistic benefits of smartwater on oil recovery cannot be effective in SP flooding processes, especially with specific surfactant formulations under optimal salinity conditions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3