Mechanical-Damage Characterization in Proppant Packs by Use of Acoustic Measurements

Author:

Aderibigbe Aderonke A.1,Valdes Clotilde Chen1,Heidari Zoya2,Fuss-Dezelic Tihana3

Affiliation:

1. Texas A&M University

2. University of Texas at Austin

3. Saint-Gobain Proppants

Abstract

Summary The strength and conductivity of proppant packs are key parameters for assessing proppant-pack performance. Mechanical damage in the propping agents, which leads to compaction and crushing, significantly reduces the conductivity of the proppant pack. Mechanical damage of proppants is usually analyzed by use of crush tests. However, measurements from these tests remain questionable because of discrepancies in procedures and test results. Therefore, a need emerges to develop techniques for characterizing the properties and mechanical damage in proppant packs. In this paper, we introduced a new technique that is based on interpretation of acoustic measurements from a granular effective-media model to quantify mechanical damage in propping agents. We performed uniaxial compression tests in the laboratory and measured the compressional- and shear-wave velocities in proppant packs loaded at axial stresses ranging from 10 to 110 MPa. After unloading the tests in which maximum axial stresses of 28, 55, 69, 97, and 110 MPa were applied, we conducted sieve analysis on the proppant packs. We applied an effective-medium theory modeled after the Hertz-Mindlin granular contact model to approximate the effective elastic properties. We then calibrated the model by use of the elastic properties estimated from the experimental measurements to characterize the mechanical damage of the proppant packs. We observed that the increase in grain-to-grain contact as the axial stress increases results in compaction and crushing in the proppant pack. We showed that the compaction effects and elastic and plastic behaviors in the stress–strain profile of the proppant pack were in agreement with the analysis of fines generated at different stress levels. The combined effect of compaction and crushing resulted in a reduction of porosity and, consequently, decreased the compressional- and shear-wave velocities of the proppant pack. The Hertz-Mindlin model showed a good approximation of the effective elastic properties estimated from the acoustic-wave velocities when calibrated with the pressure-dependent grain contact and the fraction of nonslipping grains as parameters. We demonstrated that the calibrated parameters can be correlated with the mechanical damage in the proppant pack. The characterization of mechanical damage in proppant packs can improve the design of the propping agents and quantification of proppant performance. Furthermore, the laboratory procedure can be extended to the use of borehole acoustic measurements in providing a real-time in-situ assessment of proppant performance.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3