Stimulation of Carbonates Combining Acid Fracturing With Proppant (CAPF): A Revolutionary Approach for Enhancement of Sustained Fracture Conductivity and Effective Fracture Half-length

Author:

Bale Arthur1,Smith Michael B.2,Klein Henry H.3

Affiliation:

1. Statoil

2. NSI-Technologies

3. HK Technologies

Abstract

Abstract The success of conventional fracturing (using non-reactive fluids to carry proppant) and acid fracturing is dependant on both the creation of effective fracture conductivity and fracture penetration (fracture half-length). With acid fracturing, nonuniform acid-etching (or differential etching) of the fracture face creates lasting conductivity as long as stable points of support (asperities) exist along the etched fracture length. These hold the channels open and connected to the wellbore following fracture mechanical closure. However, both field experience and laboratory work have shown that even fairly competent carbonates soften and creep under closure stresses after contact with acid, thus, potentially resulting in poor retention of acid-etched fracture conductivity. Preservation of fracture conductivity becomes even more challenging in case of high effective closure pressure. Furthermore, acid fracture conductivity is dependant on surface etching patterns, which are determined by uneven permeability and mineralogy distributions. Therefore, a very clean, homogeneous isotropic carbonate may not be a good candidate for acid fracturing since a fairly uniformly etched fracture might close completely at bottomhole producing pressures. Also, carbonate formations with more than approximately 30 percent insoluble components are generally not good candidates because overall acid-etched fracture conductivity may be impaired due to low solubility and also the release of insoluble materials may tend to plug any conductive etched patterns created by the acid. The effective length of the acid-etched fracture is limited by the distance the acid can travel along the fracture and adequately etch the fracture faces before becoming spent. When acid fracturing, the etched length, not the hydraulic length, is considered the effective fracture length. Effective acid penetration will most often be shorter than any proppant placement (due to often high and increasing leak-off rates with time, and high reaction rates, especially at elevated temperatures). An indeed rare, but in theory, powerful well stimulation technique is the combination of acid fracturing (i.e., creation of a hydraulic fracture using reactive acid fluid) with proppant (CAPF) to provide permanent conductivity. Unless proppant is squeezed into the acid fracture before the end of the job, the conductivity of an acid fracture is vulnerably retained pending the stability of asperities all along the height/length of the fracture. Thus, the desire to include proppant in fracture acidizing treatments is conspicuous (but not limited to) "clean" carbonates (exhibiting uniform mineralogy and permeability), carbonates at high effective stress conditions, "soft" carbonates of any permeability (excluding high porosity chalks), low temperature dolomites (with low reaction rates) and together with organic acids where small and vulnerable etched-fracture widths are prevalent. Also, intuitively, effective fracture half-length may be extended if acid (or non-reactive fluids) can transport proppant beyond the etched penetration length "all the way" to the hydraulic tip of the fracture or even extend the hydraulic length for typical short acid fractures. A methodology proposed by Dowell more than three decades ago "Maximum Conductivity Stimulation" (MCS) is probably the first discussion of the idea of combining acid with proppant fracturing. However, the idea did not establish roots in the oil and gas industry for reasons discussed in this paper. Clearly, one missing ingredient was the lack of today's state of- the-art modeling tools for determining suitable applications and procedures. This paper presents and uses a recently developed planar 3D, gridded, FEM (finite element method) multi-layer (with varying percent of limestone/dolomite including non-reactive layers) acid fracturing model. This model fully couples rock mechanics (fracture width and propagation), matrix and natural fracture fluid loss (and effects of acid and non-acid gel fluid stages to increase and reduce fluid loss, respectively), acid reaction/acid diffusion, fluid flow, and proppant/acid transport into a single solution. Such a capability is unique at this time, and, in general, only a 3D gridded model is capable of such simulations due to the complex interactions. Case histories are examined in this paper as possible targets for CAPF. The extraordinary simulation results from modeling of this combined process and its impact on well productivity are discussed.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3