Systematic Study of Alkaline/Surfactant/Gas Injection for EOR

Author:

Denney Dennis1

Affiliation:

1. JPT Senior Technology Editor

Abstract

This article, written by Senior Technology Editor Dennis Denney, contains highlights of paper SPE 124752, ’A Systematic Study of Alkaline/Surfactant/ Gas Injection as an EOR Technique,’ by Mayank Srivastava, SPE, Jieyuan Zhang, SPE, Quoc P. Nguyen, SPE, and Gary A. Pope, SPE, University of Texas at Austin, prepared for the 2009 SPE Annual Technical Conference and Exhibition, New Orleans, 4-7 October. The paper has not been peer reviewed. Alkaline/surfactant/polymer (ASP) flooding is a popular enhanced-oil-recovery (EOR) method. However, foam can be an alternative to polymer for improving displacement efficiency. The use of foam as a mobility-control agent by coinjection or alternating injection of gas and chemical slugs is termed here an alkaline/surfactant/gas (ASG) process. Foam reduces the relative permeability of the injected chemical slug that forms a microemulsion at ultralow oil/water interfacial tension (IFT) and generates sufficient viscous pressure gradient to drive the foamed chemical slug.  Introduction In the ASP process, polymer provides mobility control during ASP slug and polymer-drive injection. However, the use of polymer has disadvantages. High-molecular-weight polymers can plug rocks with very low permeability. Many of the commercially available EOR polymers can be unstable at high temperature. Some polymers can degrade mechanically from high shear stress through chokes or perforations at high flow rate. One potential alternative to polymer is foam, which can provide mobility control in chemical-EOR processes. Liquid saturation is reduced with increased gas saturation and trapped gas in the foam, resulting in lower liquid relative permeabilities. In foam, gas bubbles are trapped in thin films of fluid called lamellae. The surface tension on the individual lamella, as well as the drag force on it as it slides along the pore walls, causes it to resist movement out of the pore throats. This resistance to movement, when combined with relative permeability reduction of the displacing fluid, results in a favorable mobility ratio and improved displacement efficiency. In ASG flooding, as in conventional chemical flooding, the mechanism of residual-oil mobilization is IFT reduction. One of the main criteria for the success of the ASG process is the formation of stable foam with adequate mobility-reduction characteristics. The full-length paper details the results of experimental work studying the ASG process to evaluate its potential as a feasible EOR technique.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3