Computational Fluid Dynamics CFD Evaluation of Laminar Flow of Bitumen-in-Water Emulsion Stabilized by Poly Vinyl Alcohol PVA: Effects of Salinity and Water Cut

Author:

Alade Olalekan1,Al Shehri Dhafer1,Mahmoud Mohamed1,Sasaki Kyuro2,Sugai Yuichi2

Affiliation:

1. KFUPM

2. Kyushu University

Abstract

Abstract Applications of oil-in-water emulsion (O/W) emulsification technology in enhanced recovery and pipeline transportation of heavy oil can be limited by several factors including salinity of the reservoir or process water, process temperature, and water cut. In this investigation, laminar flow of O/W was simulated in a pipeline to investigate the effect of salinity of aqueous phase (NaCl) and water cut on flow characteristics of the fluid. The case was simplified by considering the O/W as a stable, pseudo-homogeneous, single-phase fluid within the conditions operated. Pertinent to the objective of the study, at flow reference temperature, Tref = 30oC, the pressure drop at 30% water cut was 931Pa compared to 84.6 Pa at water cut of 50% (reference working fluid without NaCl). In contrast, the pressure drop was 239Pa, 142Pa, 124Pa, and 82.9Pa at 70000ppm, 40000ppm, 20000ppm, and 10000ppm salinity in the aqueous phase, respectively. In addition, the maximum dynamic viscosity imposed by the fluid, was ≈81000cP at 30% water cut compared to ≈14000cP from the reference fluid. The dynamic viscosity obtained from 70000ppm salinity content was ≈34000cP. Moreover, the results confirm facile application of emulsification technology for pipeline transportation of bitumen from large reduction in pressure drop (99%) regardless of the water cut and salinity.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regression modeling for laminar flow of herschel–barkley fluids in the concentric elliptical annulus;Journal of Petroleum Exploration and Production Technology;2022-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3