Abstract
Abstract
Applications of oil-in-water emulsion (O/W) emulsification technology in enhanced recovery and pipeline transportation of heavy oil can be limited by several factors including salinity of the reservoir or process water, process temperature, and water cut. In this investigation, laminar flow of O/W was simulated in a pipeline to investigate the effect of salinity of aqueous phase (NaCl) and water cut on flow characteristics of the fluid. The case was simplified by considering the O/W as a stable, pseudo-homogeneous, single-phase fluid within the conditions operated. Pertinent to the objective of the study, at flow reference temperature, Tref = 30oC, the pressure drop at 30% water cut was 931Pa compared to 84.6 Pa at water cut of 50% (reference working fluid without NaCl). In contrast, the pressure drop was 239Pa, 142Pa, 124Pa, and 82.9Pa at 70000ppm, 40000ppm, 20000ppm, and 10000ppm salinity in the aqueous phase, respectively. In addition, the maximum dynamic viscosity imposed by the fluid, was ≈81000cP at 30% water cut compared to ≈14000cP from the reference fluid. The dynamic viscosity obtained from 70000ppm salinity content was ≈34000cP. Moreover, the results confirm facile application of emulsification technology for pipeline transportation of bitumen from large reduction in pressure drop (99%) regardless of the water cut and salinity.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献