Equation of State for Relative Permeability, Including Hysteresis and Wettability Alteration

Author:

Khorsandi Saeid1,Li Liwei1,Johns Russell T.1

Affiliation:

1. Pennsylvania State University

Abstract

Summary Commercial compositional simulators commonly apply correlations or empirical relations that are based on fitting experimental data to calculate phase relative permeabilities. These relations cannot adequately capture the effects of hysteresis, fluid compositional variations, and rock-wettability alteration. Furthermore, these relations require phases to be labeled, which is not accurate for complex miscible or near-miscible displacements with multiple hydrocarbon phases. Therefore, these relations can be discontinuous for compositional processes, causing inaccuracies and numerical problems in simulation. This paper develops for the first time an equation-of-state (EOS) to model robustly and continuously the relative permeability as a function of phase saturations and distributions, fluid compositions, rock-surface properties, and rock structure. Phases are not labeled; instead, the phases in each gridblock are ordered on the basis of their compositional similarity. Phase compositions and rock-surface properties are used to calculate wettability and contact angles. The model is tuned to measured two-phase relative permeability curves with very few tuning parameters and then is used to predict relative permeability away from the measured experimental data. The model is applicable to all flow in porous-media processes, but is especially important for low-salinity polymer, surfactant, miscible gas, and water-alternating-gas (WAG) flooding. The results show excellent ability to match measured data, and to predict observed trends in hysteresis and oil-saturation trapping, including those from Land's model and for a wide range in wettability. The results also show that relative permeabilities are continuous at critical points and yield a physically correct numerical solution when incorporated within a compositional simulator (PennSim 2013). The model has very few tuning parameters, and the parameters are directly related to physical properties of rock and fluid, which can be measured. The new model also offers the potential for incorporating results from computed-tomography (CT) scans and pore-network models to determine some input parameters for the new EOS.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3